Find the sum 9+99+999+9999....+99.....9.
Answers
Answered by
1
I assume you want answer up to n terms i.e.
9+99+999+9999+99999+……. n terms
Let S= 9+99+999+9999+99999+……. n terms
S= (10–1)+(100–1)+(1000–1)+(1000–1)…..n terms
S= {(10+100+1000+…..n terms)-(1+1+1+1+…..n terms)}
S= {(10+100+1000+…..n terms)-n}
Therefore first bracket becomes a GP.
S= 10{ 10^(n-1) - 1}/(10–1) - n
S= [10{ 10^(n-1) - 1}/9] - n
9+99+999+9999+99999+……. n terms
Let S= 9+99+999+9999+99999+……. n terms
S= (10–1)+(100–1)+(1000–1)+(1000–1)…..n terms
S= {(10+100+1000+…..n terms)-(1+1+1+1+…..n terms)}
S= {(10+100+1000+…..n terms)-n}
Therefore first bracket becomes a GP.
S= 10{ 10^(n-1) - 1}/(10–1) - n
S= [10{ 10^(n-1) - 1}/9] - n
Answered by
0
infinite.............
Similar questions