Math, asked by srijansai166, 9 hours ago

Find the sum and product of Eigen value of matrix A = 3 1 4 0 2 6 0 0 5​

Answers

Answered by MaheswariS
16

\underline{\textbf{Given:}}

\mathsf{A=\left(\begin{array}{ccc}3&1&4\\0&2&6\\0&0&5\end{array}\right)}

\underline{\textbf{To find:}}

\textsf{Sum and product of eigen values of A}

\underline{\textbf{Solution:}}

\textsf{Characteristic polynomial of A is}\;\mathsf{|A-mI|=0}

\mathsf{\left|\left(\begin{array}{ccc}3&1&4\\0&2&6\\0&0&5\end{array}\right)-m\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)\right|=0}

\mathsf{\left|\begin{array}{ccc}3-m&1&4\\0&2-m&6\\0&0&5-m\end{array}\right|=0}

\textsf{Expanding along first row, we get}

\mathsf{(3-m)[(2-m)(5-m)-0]-1[0-0]+4[0-0]=0}

\mathsf{(3-m)(2-m)(5-m)=0}

\implies\mathsf{m=2,3,5}

\implies\textsf{Eigen values are 2,3 and 5}

\mathsf{Now,}

\textsf{Sum of the eigen values}

\mathsf{=2+3+5}

\mathsf{=10}

\textsf{Product of the eigen values}

\mathsf{=2{\times}3{\times}5}

\mathsf{=30}

Answered by adventureisland
3

Given:

The Eigen value of matrix A=\left[\begin{array}{ccc}3&1&4\\0&2&6\\0&0&5\end{array}\right].

To find:

The Eigen value sum and product.

Step-by-step explanation:

Sum of the Eigen values= Sum of the principal diagonal elements

=3+2+5

=5+5

=10

product of the Eigen values=|A|

=3(10-0)-1(0-0)+4(0-2)=30-8

=22

Sum=10,Product=22

Answer:

Therefore, The Eigen value of matrix Sum=10 and product=22.

Similar questions