Math, asked by kaurmanjeet58848, 2 months ago

find the sum and product of the roots of 3x-^5x+2=0​

Answers

Answered by amansharma264
14

EXPLANATION.

Quadratic equation.

⇒ 3x² - 5x + 2 = 0.

As we know that,

Sum of the zeroes of quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-5)/3 = 5/3.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = 2/3.

As we know that,

Formula of quadratic polynomial.

⇒ x² - (α + β)x + αβ.

⇒ x² - (5/3)x + 2/3 = 0.

⇒ 3x² - 5x + 2 = 0.

                                                                                                                 

MORE INFORMATION.

Quadratic expression.

A polynomial of degree two of the form ax² + bx + c (a ≠ 0) is called a quadratic expression in x.

The quadratic equation.

⇒ α = -b + √D/2a.

⇒ β = -b - √D/2a.

⇒ D = Discriminant.

⇒ D = b² - 4ac.

Answered by diajain01
28

{\boxed{\underline{\tt{ \orange{Required  \:  \: answer:-}}}}}

★GIVEN:-

  •  \sf{Equation  = 3x^2 -5x +2 =0}

★TO FIND:-

  • Sum of roots

  • product of roots

★SOLUTION:-

Our Standard Quadratic equation is-

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :  \implies \: { \boxed{ \underline{ \sf{ax^2 + bx + c}}}}

:  \longrightarrow \:  \sf{Sum  \:  \: of \:  \:  Roots  \: =  \:  \frac{ - b}{a} }

 :  \longrightarrow \sf{Product \:  \:  of  \:  \: Roots \:  =  \:  \frac{c}{a} }

So on Comparing,

 :  \longrightarrow \sf{3x^2 -5x + 2=0}

 :  \longrightarrow \sf{sum \:  \: of \:  \: roots \:  =  \:  \frac{ - ( - 5)}{3} }

 :  \longrightarrow \sf{sum \:  \: of \:  \: roots \:  =  \:  \frac{  5}{3} }

:\longrightarrow\sf{Product  \:  \: of  \:  \: Roots \:  = \:   \frac{c}{a} }

:\longrightarrow\sf{Product  \:  \: of  \:  \: Roots \:  =  \:  \frac{2}{3} }

so, sum is 5/4

and product is 2/3

★MORE TO KNOW:-

  • D = b^2 - 4ac

  • x =  \frac{-b ±  \sqrt{D}  }{2a}

  • Standard form of equation:- ax^2 + bx + c= 0

FACTORING FORMULA'S

  •  {a}^{2}  -  {b}^{2}  = (a - b)(a + b)

  •  {a}^{3}  -{b}^{3}  = (a - b)( {a}^{2}  + ab +  {b}^{2} </strong><strong>

  •  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab +  {b}^{2}</strong><strong>

  •  {a}^{4}  -  {b}^{4} = (a - b)(a + b)( {a}^{2}   +  {b}^{2})
Similar questions