Math, asked by ayushvinithap, 6 days ago

Find the sum and product of zeros of the following polynomial - x² + 2x -1. class 10 pls dont spam​

Answers

Answered by yashaswininamani4
1

Answer:

\small\colorbox{purple}{✓Verified answer}[/tex]

 -  {x}^{2}  + 2x - 1 \\  \alpha  +  \beta  =   \frac{ - b}{a } \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{ - 2}{ - 1 }  = 2 \\  \alpha  \beta  =  \frac{c}{a }  \\    \frac{ - 1}{ - 1}  = 1

hope this helps you plz follow

Answered by mamtabirla543
0

   \sf- {x}^{2}  + 2x - 1 \\ \sf  -  {x}^{2}  + x + x - 1 \\    \sf- x(x  -  1) + 1(x - 1) \\  \sf(x - 1)(1 - x) \\  \implies \sf x = 1 \: and \: 1

  \alpha = 1  \\  \beta  = 1

   \sf Sum \:  of  \: Zeroes= \alpha  +  \beta  \\  \sf \frac{ - b}{a}  = 1 + 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf  \frac{ - 2}{ - 1} = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \longrightarrow\boxed{\sf{2 = 2}} \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf Product \:  of  \: Zeroes =  \alpha   \times  \beta \\  \sf \frac{ c}{a}  = 1 \times 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \sf  \frac{ - 1}{ - 1}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \sf  \longrightarrow\boxed{ \sf1 = 1} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions