Math, asked by Bharatkaushik4813, 8 months ago

Find the sum and product of zeros of the polynomial 6x²-3-7x

Answers

Answered by sethrollins13
57

Given :

  • Polynomial 6x²-3-7x

To Find :

  • Sum and Product of Zeroes

Solution :

\implies\sf\bold{{6x}^{2}-7x-3}

By Splitting Middle Term :-

\implies\sf{{6x}^{2}-(9x-2x)-3}

\implies\sf{{6x}^{2}-9x+2x-3}

\implies\sf{3x(2x-3)+1(2x-3)}

\implies\sf{(3x+1)(2x-3)}

  • x = \dfrac{-1}{3}

  • x = \dfrac{3}{2}

So , -1/3 and 3/2 are the zeroes of polynomial 6x²-7x-3...

_____________________

Here :

  • a = 6
  • b = -7
  • c = -3

Sum of Zeroes :

\implies\sf{\alpha+\beta=\dfrac{-b}{a}}

\implies\sf{\dfrac{-1}{3}+{3}{2}=\dfrac{-(-7)}{6}}

\implies\sf{\dfrac{-2+9}{6}=\dfrac{7}{6}}

\implies\sf{\dfrac{7}{6}=\dfrac{7}{6}}

\implies\sf\bold{L.H.S=R.H.S}

Product of Zeroes :

\implies\sf{\alpha\beta=\dfrac{c}{a}}

\implies\sf{\dfrac{-1}{3}\times\dfrac{3}{2}=\dfrac{-3}{6}}

\implies\sf{\cancel\dfrac{-3}{6}=\cancel\dfrac{-3}{6}}

\implies\sf{\dfrac{-1}{2}=\dfrac{-1}{2}}

\implies\sf\bold{L.H.S=R.H.S}

Similar questions