Math, asked by paramjit12077b, 6 months ago

find the sum and the product of the zeroes of the polynomial x2-6x+5​

Answers

Answered by nithya3322
5

Step-by-step explanation:

hope it helps.....

pls mark me as brainlilest

Attachments:
Answered by prince5132
25

GIVEN :-

  • A quadratic equation x² - 6x + 5 = 0.

TO FIND :-

  • sum of zeros ( ɑ + β )
  • product of zeros ( ɑ × β ).

SOLUTION :-

 \\  :   \implies \displaystyle \sf \:  \alpha  =   \frac{ - b  +  \sqrt{b ^{2} - 4ac } }{2a}  \\  \\

  • a = 1.
  • b = -6.
  • c = 5.

 \\  \\  :   \implies \displaystyle \sf \:  \alpha  =  \frac{ - ( - 6) +  \sqrt{( - 6) ^{2} - 4 \times 1 \times 5 } }{2 \times 1}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \alpha  =  \frac{6 +  \sqrt{36 - 20} }{2}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \alpha  =  \frac{6 +  \sqrt{16} }{2}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \alpha  =  \frac{6 + 4}{2}  \\  \\  \\

 :   \implies \displaystyle \sf \:  \alpha  =  \frac{10}{2}  \\  \\  \\

 :   \implies \underline{  \boxed{ \displaystyle \sf \:  \alpha  = 5}} \\  \\

Similarly,

 \\  \\  :   \implies \displaystyle \sf \:   \beta  =  \frac{ - b -  \sqrt{b ^{2} - 4ac } }{2a}  \\  \\

  • a = 1.
  • b = -6.
  • c = 5.

 \\  \\ :   \implies \displaystyle \sf \:   \beta  =  \frac{ - ( - 6) -  \sqrt{( - 6) ^{2}  - 4 \times 1 \times 5 } }{2 \times 1}  \\  \\  \\

:   \implies \displaystyle \sf \:   \beta  =  \frac{6 -  \sqrt{36 - 20} }{2}  \\  \\  \\

:   \implies \displaystyle \sf \:   \beta  =  \frac{6 - \sqrt{16}  }{2}  \\  \\  \\

:   \implies \displaystyle \sf \:   \beta  =  \frac{6 - 4}{2}  \\  \\  \\

:   \implies \displaystyle \sf \:   \beta  =  \frac{2}{2}  \\  \\  \\

:   \implies  \underline{ \boxed{\displaystyle \sf \:   \beta  = 1}} \\  \\

Now sum of zeroes ( ɑ + β ),

 \\  :   \implies \displaystyle \sf \:   \alpha  +  \beta  = 5 + 1 \\  \\  \\

  :   \implies  \underline{ \boxed{\displaystyle \sf \:   \alpha  +  \beta  = 6}} \\  \\

Similarly product of zeroes ( ɑ × β ),

 \\   :   \implies \displaystyle \sf \:   \alpha   \beta  = 5 \times 1 \\  \\  \\

 :   \implies  \underline{\boxed{ \displaystyle \sf \:   \alpha   \beta  = 5}}

Similar questions