Math, asked by praris, 4 months ago

Find the sum and the product of the zeros of the quadratic polynomial 3x^2+7x+4

Answers

Answered by chikki43
1

Answer:

sum of quadratic equation is -b/a= -7/3

product of zeros is c/a =4/3

Answered by Anonymous
22

 \huge \sf \underline \red{Answer : }

\sf \underline{ \therefore \:  \dfrac{4}{3}  \: and \:  \dfrac{7}{3}}

 \huge \sf \underline \pink{To  \: Find : }

  • sum and product of the zeroes of the Qudratic polynomial

 \huge \sf \underline \blue{solution : }

  \:  \:  \:  \:  \:  \:  \:  \: \sf \underline{Given \: 3 {x}^{2}  - 4x + 7}

 \sf \underline{We \: know \: that :a {x}^{2} + bx + c  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \ \star \: {a = 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \ \star \: {b =  - 4}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \ \star \: {c= 7}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \boxed{ \underline{ \underline{ \red{ \sf{sum \: of \: zeroes =  \dfrac{ - b}{a} \: }}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  -  \dfrac{( - 4)}{3}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =  \dfrac{4}{3}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf{ \boxed{ \underline{ \underline{ \red{ \sf{product \: of  \: the\: zeroes =  \dfrac{c}{a} \: }}}}}}

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ =   \dfrac{7}{3}}

 \sf \underline{ \therefore \:  \dfrac{4}{3}  \: and \:  \dfrac{7}{3}}

Similar questions