Math, asked by kullaaspooorti, 5 months ago

Find the sum n terms of the series 11+103+1005+......n?​

Answers

Answered by itzpriya22
5

\underline{\textbf{Given:}}

\mathsf{Series\;is\;11+103+1005+10007+..........+n\;terms}

\underline{\textbf{To find:}}

\textsf{The sum of the given series}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{11+103+1005+10007+..........+n\;terms}

\textsf{This can be written as}

\mathsf{=(10+1)+(100+3)+(1005)+..........+n\;terms}

\textsf{Splitting the series}

\mathsf{=(10+100+1000+...........+n\;terms)+(1+3+5+........+n\;terms)}

\mathsf{=(10+(10)^2+(10)^3+...........+n\;terms)+(1+3+5+........+n\;terms)}

\mathsf{=(Sum\;of\;first\;n\;terms\;the\;G.P\,with\,a=10\,and\,r=10)+(Sum\;of\;first\;n\;odd\;natural\;numbers)}

\mathsf{=\dfrac{a(r^n-1)}{r-1}+n^2}

\mathsf{=\dfrac{10(10^n-1)}{10-1}+n^2}

\mathsf{=\dfrac{10}{9}(10^n-1)+n^2}

\underline{\textbf{Answer:}}

\mathsf{\bf\,11+103+1005+10007+..........+n\;terms=\dfrac{10}{9}(10^n-1)+n^2}

Similar questions