Math, asked by tooshort7250, 3 months ago

Find the sum of 0.6 1.7 2.8 to 100 terms

Answers

Answered by sharanyalanka7
9

Answer:

Step-by-step explanation:

Given,

0.6 , 1.7 , 2.8 , ..

To Find :-

Sum of first 100 terms

Solution :-

We can say that "0.6 , 1.7 , 2.8 , .." are in A.P

Because :- The common difference(d) is same

1.7 - 0.6 = 2.8 - 1.7

1.1 = 1.1

Common difference(d) = 1.1

First term(a) = 0.6

As we need find sum of 100 terms n = 100

Formula Required :-

\sf S_n=\dfrac{n}{2}[2a+(n-1)d]

Let's do :-

\sf S_{100}=\dfrac{100}{2}[2(0.6)+(100-1)1.1]

\sf=50[1.2+99(1.1)]

\sf=50[1.2+108.9]

\sf = 50(110.1)

= 5505

Sum of first 100 terms = 5505

Answered by TrueRider
84

 \bf \color{red}Question :

Find the sum of 0.6 1.7 2.8 to 100 terms

 \bf \purple{Solution: }

\bf \: Given,

 \bf \: First \: term, a = 0.6

 \bf \: Common \: difference, d = a_{2} - a_{1}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \: \bf= 1.7 -0.6

 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:   \:  \:  \:  \:  \:  = 1.1

 \bf \: Number \: of \: terms, n = 100

Formula for sum of the nth term in the AP series is,

\boxed{\color{blue}{\sf S _{n}= \frac{n}{2}   \:[2a + (n − 1)d]}}

\bf \: S _{100} =   \frac{100}{2}  [2(0.6) + (100 – 1)1.1]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + (99)  \times  (1.1)]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + 108.9)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[110.1]

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf= 5505

 \bf \color{red}{Sum \: of \: first \: 100 \: terms = 5505}

Similar questions