Math, asked by ItzDazzingBoy, 2 months ago

Find the sum of 0.6 1.7 2.8 to 100 terms​

Answers

Answered by XxTheBrainlyLegendxX
16

Answer:

 \bf \color{red}Question :

Find the sum of 0.6 1.7 2.8 to 100 terms

 \bf \purple{Solution: }

\bf \: Given,

 \bf \: First \: term, a = 0.6

 \bf \: Common \: difference, d = a_{2} - a_{1}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \: \bf= 1.7 -0.6

 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:   \:  \:  \:  \:  \:  = 1.1

 \bf \: Number \: of \: terms, n = 100

Formula for sum of the nth term in the AP series is,

\boxed{\color{blue}{\sf S _{n}= \frac{n}{2}   \:[2a + (n − 1)d]}}

\bf \: S _{100} =   \frac{100}{2}  [2(0.6) + (100 – 1)1.1]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + (99)  \times  (1.1)]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + 108.9)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[110.1]

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf= 5505

 \bf \color{red}{Sum \: of \: first \: 100 \: terms = 5505}

Answered by roshni542
27

QUESTION:-

1. Find the sum of 0.6 1.7 2.8 to 100 terms.

ANSWER:-

 \tt \: →here \: a = 0.6

 \tt \:→ d = 1.7 - 0.6 = 1.1 \: and,n = 100

 \tt \: →we \: know \: that,

 \tt \:→  {s}^{n}  =  \frac{n}{2} [ \: 2a + (n - 1)d]

 \tt→∴ {s}^{100 =  \frac{100}{2} } [ \: 2 \times 0.6 + (100 - 1) \times 1.1]

 \tt \: →50 \times [2 \times 0.6 + (100 - 1) \times 1.1]

  \tt→50 \times [1.2 + 108.9]

 \tt→50 \times 110.1 = 5505.0

 \tt \: ∴hence \: the \: sum \: of \: first \: 100 \: terms \: of \: the \: given \: A.P= 5505

Hope it's help you

Similar questions