Math, asked by PointsForLB3, 1 month ago

Find the sum of 0.6 1.7 2.8 to 100 terms

Only My Following Will Gave Answer​

Answers

Answered by LemmieFeal
9

Answer:

 \bf \color{red}Question :

Find the sum of 0.6 1.7 2.8 to 100 terms

 \bf \purple{Solution: }

\bf \: Given,

 \bf \: First \: term, a = 0.6

 \bf \: Common \: difference, d = a_{2} - a_{1}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \: \bf= 1.7 -0.6

 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:   \:  \:  \:  \:  \:  = 1.1

 \bf \: Number \: of \: terms, n = 100

Formula for sum of the nth term in the AP series is,

\boxed{\color{blue}{\sf S _{n}= \frac{n}{2}   \:[2a + (n − 1)d]}}

\bf \: S _{100} =   \frac{100}{2}  [2(0.6) + (100 – 1)1.1]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + (99)  \times  (1.1)]

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[1.2 + 108.9)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf= 50[110.1]

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf= 5505

 \bf \color{red}{Sum \: of \: first \: 100 \: terms = 5505}

Answered by Anonymous
3

Answer:

Refer to the attachment for answer

Attachments:
Similar questions