Find the sum of
1².n + 2².(n-1) + 3²(n-2) + 4²(n-3) +.... to n terms.
Answers
Answered by
7
Answer:
n(n + 1)²[n + 2]/12
Step-by-step explanation:
Hi,
GIven Sn = 1².n + 2².(n-1) + 3²(n-2) + 4²(n-3) +.... to n terms.
= ∑r².(n - r + 1)
= ∑r²(n + 1 - r)
= (n + 1)∑r² - ∑r³------------(1)
∑r² = Sum of squares of first n natural numbers
= n*(n + 1)*(2n + 1)/6---------(2)
∑r³ = Sum of cubes of first n natural numbers
= n²(n + 1)²/4-----------(3)
Substituting (2) and (3) in (1), we get
Sn = (n + 1)[n(n+1)(2n + 1)/6] - n²(n + 1)²/4
= n(n + 1)²[(2n + 1)/6 - n/4]
= n(n + 1)²[4n + 2 - 3n]/12
= n(n + 1)²[n + 2]/12
Hope, it helps !
Similar questions