Math, asked by ph8270371, 5 months ago

find the sum of 15 terms of an AP -3,-5,-7-9

Answers

Answered by brainlyofficial11
319

ᴀɴsᴡᴇʀ

given

☞︎︎︎ AP = -3 , -5 , -7 , -9

_________________________

to find

☞︎︎︎ sum of 15 terms?

_________________________

solution

  • a1 = first term
  • d = common difference
  • Sn = sum of nth terms
  • n = term number

here,

a _{1}  =  - 3 \\ a _{2}  =  - 5 \\ a _{3}  =  - 7

we know that, common difference;

d =  a_{2} -  a_{1}  =  a_{(n + 1)} -  a_{n}

here,

d =  a_{2} -  a_{1} = \:  a_{3} -  a_{2} \\  \\  :  \implies \: d =  - 5 - ( - 3) =  - 7 - ( - 5) \\  \\  :  \implies \: d =  - 5 + 3   =  - 7 + 5  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\  :   \implies \: d =  - 2  =  - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

so, common difference = -2

_______________________________

we know that, sum of nth terms of an AP ,S

S =  \frac{n}{2} \{ \: 2a + (n - 1)d \} \\

and here,

a = -3

n = 15

d = -2

now substitute all these values in the formula,

S_{15} =  \frac{15}{2}  \times  \{2 \times ( - 3) + (15 - 1) \times  - 2 \} \\  \\  :  \implies S_{15} =  \frac{15}{2}   \times  \{ - 6 + 14 \times ( - 2) \} \:  \:  \:  \:  \:  \\   \\ :  \implies S_{15} =  \frac{15}{2}  \times ( - 6  - 28)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  : \implies  S_{15} =  \frac{15}{2}  \times  (- 34) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  :  \implies \: S_{15} =  \frac{15}{ \cancel{2}}  \times  \cancel{ - 34}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  :  \implies S_{15} = 15 \times  - 17  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  :  \implies S_{15} =  - 255 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

hence, sum of 15 terms of AP is -255 ✔︎

Similar questions