Math, asked by ShrustiPattar, 3 months ago

find the sum of 1st 10 terms of AP whose 4th term 13 & 8th term is 29​

Answers

Answered by nilakshi96
2

Answer:

190

Step-by-step explanation:

a4=13

a7=29

a+3d=13

a+7d=29

by solving, d =4 and a=1

S10= 10/2(2×1 +9(4))

= 5(2+36)

=5(38)

= 190

Answered by amansharma264
12

EXPLANATION.

4th term of an A.P. = 13.

8th term of an A.P. = 29.

As we know that,

General term of an A.P.

⇒ Tₙ = a + (n - 1)d.

⇒ T₄ = a + (4 - 1)d.

⇒ T₄ = a + 3d.

⇒ a + 3d = 13. ⇒(1).

⇒ T₈ = a + (8 - 1)d.

⇒ T₈ = a + 7d.

⇒ a + 7d = 29. ⇒(2).

From equation (1) & (2), we get.

⇒ a + 3d = 13.

⇒ a + 7d = 29.

We get,

⇒ -4d = -16.

⇒ 4d = 16.

⇒ d = 4.

Put the value of d = 4 in equation (1), we get.

⇒ a + 3(4) = 13.

⇒ a + 12 = 13.

⇒ a = 13 - 12.

⇒ a = 1.

First term = a = 1.

Common difference = d = b - a = 4.

As we know that,

Sum of nth term of an A.P.

⇒ Sₙ = n/2[2a + (n - 1)d].

⇒ S₁₀ = 10/2[2(1) + (10 - 1)4].

⇒ S₁₀ = 5[2 + 9(4)].

⇒ S₁₀ = 5[2 + 36].

⇒ S₁₀ = 5[38].

⇒ S₁₀ = 190.

                                                                                                                       

MORE INFORMATION.

Supposition of an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : = a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Similar questions