Math, asked by Jaivadan5126, 8 months ago

Find the sum of 1st 22 terms of an ap in which d is 7 and 22 term is 149

Answers

Answered by Anonymous
3

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

\bigstar\sf\underline\orange{Given:-}

\longrightarrow\sf{d = 7}

\longrightarrow\sf{ 22 th\:\: term\: = \:149}

_________________________

\longmapsto\sf\red{To\: find\: the \:value \:of\: a }

\longrightarrow\sf{an = a + (n - 1)d}

\longrightarrow\sf{149 = a + (22 - 1)7}

\longrightarrow\sf{149 = a + 21 \times 7}

\longrightarrow\sf{149 = a + 147}

\longrightarrow\sf{a = 149 - 147}

\longrightarrow\sf{a = 2}

\longmapsto\sf\red{To\: find \:the\: sum\: of \:first\: 22 \:terms }

\longrightarrow\sf{Sn = \dfrac{n}{2} (a +  l) }

\longrightarrow\sf{Sn= \dfrac{22}{2} (2 +  149) }

\longrightarrow\sf{Sn = 11  \times 151  }

\longrightarrow\sf{Sn = 1661}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Answered by Anonymous
15

\huge\tt\red{Given→}

  • d(common difference)= 7
  • 7a+21d(22nd term)= 149

\huge\tt\red{To\:\:find→}

  •  s_{22} =  ?

As,

a + 21d = 149

a + (21 \times 7) = 149

a = 149 - 147

a = 2

Now,

 s_{n} =   \frac{n}{2} (2 + l ) \\

 s_{n} =   \frac{22}{2} (2 + 149)

 s_{n} =  11 \times 151

 s_{n} =  1661

 Hence, \: s_{22} =  1661

Similar questions