Math, asked by rpxexclusive8210, 9 months ago

Find the sum of 3 upon root 5 + root 5 + 7 root 5 +...to 15 term

Answers

Answered by mihir2695
1

Answer:

here is your answer

Step-by-step explanation:

Question mistake

it will be 7/√5

now after omitting mistake it will be come an A.P

now common difference is

√5-3/√5=7/√5-√5=2/√5

now sum of terms in A.P is

S=n/2(2a+(n-1)d)

Putting value of n=15 a=3/√5 and d=2/√5 in above situation we get

S=15/2(2√3/5+(15-1)√2/5)

i hope it will be helpful

Answered by Mihir1001
3

\huge{\underline{\mathfrak{\textcolor{blue}{Answer :}}}}

\huge\boxed{51 \sqrt{5} }

\LARGE{\underline{\mathrm{\textcolor{red}{Step-by-step \:  \: explanation :}}}}

\LARGE{\underline{\mathtt{\textcolor{violet}{Given :-}}}}

The given AP :

\Large{ \frac{3}{ \sqrt{5} }  +  \sqrt{5}  +  \frac{7}{ \sqrt{5} } ...............}

  • first term, a\large{ =<strong> </strong> \frac{3}{ \sqrt{5} } }

  • common difference, d \large{ =  \left(  \frac{3}{ \sqrt{5} }  -  \sqrt{5}  \right)  =  \left(  \sqrt{5}  -  \frac{7}{ \sqrt{5} }  \right)  =  \left(  \frac{2}{ \sqrt{5} }  \right) }

  • number of terms, n = 15

\LARGE{\underline{\mathtt{\textcolor{green}{To \:  \: find :-}}}}

Sum of n ( 15 ) terms

\LARGE{\underline{\mathtt{\textcolor{teal}{Concept \:  \:  used :-}}}}

Arithmetic Progression ( A.P. )

\LARGE{\underline{\mathtt{\textcolor{blue}{Solution :-}}}}

We have,

\Large{S_n =  \frac{n}{2} [ 2a + ( n - 1 )d ]}

 \therefore  \:  \: ,

\Large{ \longmapsto S_1_5 =  \frac{15}{2} [ 2a + ( 15 - 1 )d ]}

\Large{ \implies S_1_5 =  \frac{15}{2} [ 2a + 14d ]}

\Large{ \implies S_1_5 =  \frac{15}{2}  \times 2[ a + 7d ]}

\Large{ \implies S_1_5 =  \frac{15}{ \cancel{2} }  \times  \cancel{2} [ a + 7d ]}

\Large{ \implies S_1_5 = 15 \times [ a + 7d ]}

\Large{ \implies S_1_5 = 15 \times  \left[  \frac{3}{ \sqrt{5} }  + 7 \left(  \frac{2}{ \sqrt{5} }  \right)  \right] }

\Large{ \implies S_1_5 = 15 \times  \left[  \frac{3}{ \sqrt{5} }  +  \frac{14}{ \sqrt{5} }  \right] }

\Large{ \implies S_1_5 = 15 \times  \left[  \frac{3 + 14}{ \sqrt{5} }  \right] }

\Large{ \implies S_1_5 = 15 \times  \left[  \frac{17}{ \sqrt{5} }  \right] }

\Large{ \implies S_1_5 =  \sqrt{5}  \times  \sqrt{5}  \times 3 \times  \left[  \frac{17}{ \sqrt{5} }  \right] }

\Large{ \implies S_1_5 =  \sqrt{5}  \times 1 \times 3 \times  \left[  \frac{17}{1} \right] }

\Large{ \implies S_1_5 =  \sqrt{5}  \times 3 \times 17}

\Large{ \implies S_1_5 =  \sqrt{5}  \times 51}

\Large{ \implies S_1_5 = 51 \sqrt{5} }

\LARGE{\underline{\mathtt{\textcolor{magenta}{Conclusion :-}}}}

Hence, sum of all terms \large{ = 51 \sqrt{5} }

{\fcolorbox{green}{#82ffff}{\textcolor{#300061}{your required answer is above ......... keep smiling ….. :)}}}&lt;marquee direction="down" scrollamount="1/10"&gt;❤just love❤&lt;/marquee&gt;&lt;marquee direction="up" scrollamount="1/10"&gt;❤just love❤&lt;/marquee&gt;

.

.

.

.

.

.

.

\bold{hope.... \: it \: helps.}

and... mark this answer as ❤BRAINLIEST❤

and... if u can...... then

&lt;p style="background-color:gold;"&gt;&lt;b&gt;&lt;i&gt;......&lt;u&gt;..follow me..&lt;/u&gt;...... !!&lt;/i&gt;!&lt;/b&gt;&lt;/p&gt;

Thanks for reading................................................ :)

\huge{\fcolorbox{red}{orange}{brainliest \: answer}}

&lt;body style="background-color:rgb(225,255,255); back"&gt;&amp;nbsp; .........&lt;b&gt;………..❤Thank you to all my lovely readers❤............╭∩╮(︶︿︶)╭∩╮..&lt;/b&gt;..&lt;/body&gt;

&lt;marquee&gt; please answer my questions too… ….. …please¯\_(ツ)_/¯&lt;/marquee&gt;

&lt;marquee direction="right"&gt; ( ˘ ³˘)❤ &lt;/marquee&gt;

&lt;marquee bgcolor="pink" behaviour="slide" direction="down" scrollamount="2" height="60px" width=120px"&gt;❤thanks❤ ... &lt;/marquee&gt;&lt;marquee bgcolor="pink" behaviour="slide" direction="up" scrollamount="2" height="60px" width="200px"&gt;......... to........ my answer&lt;/marquee&gt;&lt;marquee behaviour="slide" direction="left" scrollamount="5" height="60px" width="400px"&gt;30 thanks❤ = follow&lt;br/&gt;40 thanks❤ = get my no. in inbox&lt;br/&gt;50 thanks❤ = as u wish...&lt;/marquee&gt;

Similar questions