Math, asked by mantuvishwakarma, 1 year ago

find the sum of 3x^2-2x+9 and the quotient of xyz(x+y)(y+z)(z+x) divided by xy^2+xyz​

Answers

Answered by empathictruro
34

Answer:

Step-by-step explanation:

Take 2nd term xyz(x+y) (y+z) (z+x) /(xy^2+xyz) =xyz(x+y) (y+z) (z+x) /xy(y+z)

On solving, =z(x+y) (z+x) =z(xz+yz+x^2+xy) =xz^2+yz^2+x^2z+xyz

Add3x^2-2x+9 and xz^2+yz^2+x^2z+xyz, we get

=x^2(3+z) +x(z^2-2+yz) +yz^2+9

Answered by lublana
53

Given:

3x^2-2x+9  and

\frac{xyz(x+y)(y+z)(z+x)}{xy^2+xyz}

To find:

Sum of 3x^2-2x+9 and quotient of \frac{xyz(x+y)(y+z)(z+x)}{xy^2+xyz}

Solution:

Quotient=\frac{xyz(x+y)(y+z)(z+x)}{xy^2+xyz}

             =\frac{xyz(x+y)(y+z)(z+x)}{xy(y+z)}

              =z(x+y)(z+x)

Quotient=z(xz+x^2+yz+xy)

Quotient=xz^2+x^2z+yz^2+xyz

Sum of 3x^2-2x+9 and xz^2+x^2z+yz^2+xyz

=3x^2-2x+9+xz^2+x^2z+yz^2+xyz

=x^2(3+z)+x(-2+z^2+yz)+yz^2+9

Similar questions