Find the sum of 5^2+7^2+9^2+.....+39^2
Answers
Answered by
3
Answer:
Step-by-step explanation:The formula for this question is:
Sn=[n(n+1)(2n+1)]÷6.
Since sum starts from 5, findS39 then deduct the squares of 1,2,3 and 4 from the S39.The answer is :20540-1^2- 2^2- 3^2- 4^2
=20510...which is your required answer.
Answered by
7
5² + 7² + 9² + ... + 39² = 10650
Given:
- 5² + 7² + 9² + ... + 39²
To Find:
- Sum
Solution:
- ∑n² = n(n + 1)(2n + 1)/6
- ∑n = n(n + 1)/2
Step 1:
Understand the series:
5² + 7² + 9² + ... + 39²
5 = 2 (1) + 3
7 = 2(2) + 3
39 = 2(18) + 3
Hence ∑(2n + 3)² where n = 1 to 18
Step 2:
Using identity (a + b)² = a² + 2ab + b²
∑(2n + 3)² = ∑(4n² + 12n + 9)
= 4∑n² + 12∑n + ∑9
Step 3:
Substitute ∑n² = n(n + 1)(2n + 1)/6 and ∑n = n(n + 1)/2
= 4n(n + 1)(2n + 1)/6 + 12 n(n + 1)/2 + 9n
Step 4:
Substitute n = 18
= 4(18)(19)(37)/6 + 12 (18)(19)/2 + 9(18)
= 8436 + 2052 + 162
= 10650
Hence, 5² + 7² + 9² + ... + 39² = 10650
Similar questions
English,
6 months ago
Environmental Sciences,
6 months ago
English,
6 months ago
Math,
1 year ago
Computer Science,
1 year ago