find the sum of 51 term of AP in which second and third term are 14 and 18 respectively
Answers
Answered by
0
Here's your answer mate,
Given that , t2 = 14 & t3 = 18 .
»tn = a + (n-1) d
»t2 = a + (14-1) d
t2 = a + 13d
14 = a + 13d ..............(1)
»t3 = a + (18-1) d
t3 = a + 17d
18 = a + 17d ..............(2)
Subtract equation (1) from (2),
18 = a + 17d..............(2)
-14 = a + 13d..............(1)
_________________
4 = 4d
.·.d = 4/4
.·.d = 1
Put value of d in equation (1)
14 = a + 13(1)
14 = a + 13
.·.a = 14 -13
.·.a = 1
Now we know the values of a and d ,
Sn = n/2 * [ 2a + (n-1) d ]
S51= 51/2 * [ 2*1+(51-1) * 1 ]
S51= 51/2* [2 + 50 ]
S51= 51/2* 52
S51=2652/2
.·.S51= 1326
Problem solved !!!
Answered by
2
Similar questions