Math, asked by SachinNavade, 7 months ago

Find the sum of all 2 digit positive integers​

Answers

Answered by jadu91
2

Answer:

The sum of all 2 digit positive integer is

10+11+12+..........+99

Which are in ap

With a=10

d=1

n=89

Sn=n/2{2a+(n-1)d}

=89/2{2x10+(89-1)1}

=44.5(20+88)

=44.5x118

=5251

Answered by STarAK
16

\huge\underline{\mathbb\red{➣s}\green{o}\mathbb\blue{l}\purple{u}\mathbb\orange{ti}\pink{on}}\: ,

 \textit{✰two digit postive interges,}

 \textit{10,11,12.......99}

 \textit{❥first finding(n) sum of number}

 \textit{99 = 10+(n-1)×1}

 \textit{99 = 10+n - 1}

 \textit{99-9 = n}

 \textit{90= n} ,

 \textit{d = 11-10=1}

 \textit{a = 10}

 \textit{❥sum of number s}

 \textit{sn= n/2+(a+an}

 \textit{sn = 90/2×( 10+99)}

 \textit{sn = 45×109 = 4950answer.}

Similar questions