Math, asked by babaimandal30, 1 year ago

Find the sum of all 3-digit numbers which leave the remainder 1, when divided by 4.
[Hint: First term =101, last term =997]

Answers

Answered by abdul9838
14

\small \bf \red{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \red{ \huge \: solution} \\  \\ \small \bf \red{given \: that} \\  \\ \small \bf \red{first \: term \: (a1) = 101} \\  \\ \small \bf \red{2nd \: term (a2)=104 } \\  \\ \small \bf \red{ \therefore \: common \: difference \: (d) = (a2 - a1)} \\  \\ \small \bf \red{d = 105 - 101 = 4} \\  \\ \small \bf \red{last \: term \: (an) =997 } \\  \\ \small \bf \red{ \boxed{ \bf \: using \: this \: formula}} \\  \\ \small \bf \red{an = a + (n - 1) \times d} \\  \\ \small \bf \red{997 = 101 + (n - 1) \times 4} \\  \\ \small \bf \red{997 - 101 = 4n - 4} \\  \\ \small \bf \red{896 + 4= 4n} \\  \\ \small \bf \red{900 = 4n} \\  \\ \small \bf \red{n =  \frac{900}{4} } \\  \\ \small \bf \red{n = 225} \\  \\ \small \bf \red{ \boxed{again \: using \: to \: this \: formula}} \\  \\ \small \bf \red{sn =  \frac{n}{2}(2a + (n - 1) \times d) } \\  \\ \small \bf \red{sn =  \frac{225}{2}(2 \times 101 + (225 - 1) \times 4) } \\  \\ \small \bf \red{sn =  \frac{225}{2} (202 + 224 \times 4)} \\  \\ \small \bf \red{sn =  \frac{225}{2}  ( 202 + 896)} \\  \\ \small \bf \red{sn =  \frac{225}{2} \times 1098 } \\  \\ \small \bf \red{sn = 225 \times 549} \\  \\ \small \bf \red{sn = 123525 \:  \: ans}

Similar questions