Math, asked by rajeshjain10, 9 months ago

find the sum of all even natural number from 1 to 150​

Answers

Answered by BrainlyTornado
13

ANSWER:

  • The sum of all even natural numbers from 1 to 150 = 5700

TO FIND:

  • The sum of all even natural numbers from 1 to 150.

EXPLANATION:

Series : 2 + 4 + 6 + …………… + 150

Take 2 as common

2( 1 + 2 + 3 + …………… + 75)

\red{\bigstar{\boxed{\bold{\gray{Sum\ of\ n\ natural\ number = \dfrac{n(n+1)}{ 2}}}}}}

n = 75

{2(1 + 2 + 3 + \dots\dots + 75) = \dfrac{2[75(75 + 1)]}{ 2}}

2(1 + 2 + 3 + \dots\dots + 75) =75\times76

2(1 + 2 + 3 + \dots\dots + 75) =5700

BY USING A.P FORMULA:

Series : 2 + 4 + 6 + …………… + 150

\blue{\bigstar{\boxed{\large{\gray{\bold{S_n =\dfrac{n}{2}(2a + (n-1)d)}}}}}}

n = 75

a = 2

d = 2

S_{75} =\dfrac{75}{2}(2(2)+ (75-1)2)

S_{75} =\dfrac{75}{2}(4+ (74)2)

S_{75} =\dfrac{75}{2}(4+ 148)

S_{75} =\dfrac{75}{2}(152)

S_{75} =75\times 76

2 + 4 + 6 + …………… + 150 = 5700

Hence the sum of all even natural numbers from 1 to 150 = 5700.

Similar questions