find the sum of all multiples of 6 between 200 and 800
Answers
Answered by
0
Answer:
Multiples of 6 between 200 and 1100 is 204,210,....,1098.
This form an arithmetic progression.
Where, first term is a=204 and common difference d=6
last term is l=1098
First we find number of terms,
l=a+(n-1)dl=a+(n−1)d
1098=204+(n-1)61098=204+(n−1)6
1098-204=(n-1)61098−204=(n−1)6
894=(n-1)6894=(n−1)6
n-1=\frac{894}{6}n−1=
6
894
n-1=149n−1=149
n=150n=150
Now, The sum of A.P formula is
S_n=\frac{n}{2}[2a+(n-1)d]S
n
=
2
n
[2a+(n−1)d]
S_{150}=\frac{150}{2}[2(204)+(150-1)6]S
150
=
2
150
[2(204)+(150−1)6]
S_{150}=\frac{150}{2}[408+6\times 149]S
150
=
2
150
[408+6×149]
S_{150}=75[408+894]S
150
=75[408+894]
S_{150}=75[1302]S
150
=75[1302]
S_{150}=97650S
150
=97650
Similar questions