Math, asked by muddu3, 1 year ago

find the sum of all natural number between 250 and 1000 which are divisible by 3

Answers

Answered by Paritshith
9
The numbers between 250 and 1000 which are divisible by 3 are 252, 255, 258, ......,999 
This is an A.P. whose first term a = 252, Common difference, d = 3 and Last term l=999
We Know that 
l=a+(n-1)d
999=252+(n-1)3
999 - 252 = 3(n - 1)
n=250
We know that 
S=n/2(a+l)
=250/2(252+999)
=125*1251
=156375
Hence, the required sum is 156375.(Ans)

Paritshith: mark me brainliest please
Answered by SarcasticL0ve
5

⠀⠀⠀⠀⠀⠀✇ The Number between 250 and 1000 which are exactly divisible by 3 are 252, 255, 258,....,999.

Therefore, This is an AP with,

{\sf{Here}} \begin{cases} & \sf{First\;term, a = 252 }  \\ & \sf{Common\; difference, d = 3}  \\ & \sf{\sf Last\;term, a_n  = 999} \end{cases}

━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\: Question\::}}  \\  \\

 \qquad \quad:\implies\sf a_n = 999\\ \\

 \:  \:  \:  \:  \: :\implies\sf a + (n - 1)d = 999\\ \\

 :\implies\sf 252 + (n - 1) \times 3 = 999\\ \\

 \quad:\implies\sf 252 + 3n - 3 = 999\\ \\

 \qquad:\implies\sf 249 + 3n = 999\\ \\

 \qquad:\implies\sf 3n = 999 - 249\\ \\

 \:  \:  \:  \quad \qquad:\implies\sf 3n = 750\\ \\

 \qquad \qquad:\implies\sf n = \cancel{ \dfrac{750}{3}}\\ \\

\quad \qquad:\implies{\underline{\boxed{\frak{\purple{n = 250}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{There\;are\;250\; natural\;numbers\;between\;250\;and\;1000.}}}\\\\

━━━━━━━━━━━━━━━━━━━━━━━━

✇ Now, Finding sum of 250 terms of AP,

\dag\;{\underline{\frak{We\;know\;that,}}}\\\\

 \qquad\qquad \:  \: \star{\boxed{\sf{\pink{S_n = \dfrac{n}{2} \bigg\lgroup\sf a + l \bigg\rgroup}}}}\\\\

\qquad:\implies\sf \dfrac{\cancel{ 250}}{ \cancel{2}} \bigg\lgroup\sf 252 + 999 \bigg\rgroup\\ \\

 \qquad\qquad:\implies\sf 125 \bigg\lgroup\sf 1251 \bigg\rgroup\\ \\

 \qquad\qquad \:  \: \: :\implies{\underline{\boxed{\frak{\purple{156375}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Sum\;of\;all\;natural\;numbers\;between\;250\;and\;1000\;is\; \bf{156375}.}}}

Similar questions