English, asked by singhbeant432, 7 months ago

find the sum of all natural number less than 500 that are divisible by 7​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{All natural numbers less than 500}

\underline{\textbf{To find:}}

\textsf{The sum of all natural numbers less than 500}

\textsf{and divisible by 7}

\underline{\textbf{Solution:}}

\textsf{Natural numbers less than 500 and divisible by 7 are}

\mathsf{7,14,21,28.\;.\;.\;.\;.\;.497}

\textsf{Required sum}

\mathsf{=7+14+21+\;.\;.\;.\;.+497}

\mathsf{=7(1+2+3+\;.\;.\;.\;.+71)}

\mathsf{=7\left(\dfrac{n(n+1)}{2}\right)}

\mathsf{=7\left(\dfrac{71(71+1)}{2}\right)}

\mathsf{=7\left(\dfrac{71{\times}72}{2}\right)}

\mathsf{=7{\times}71{\times}36}

\mathsf{=497{\times}36}

\mathsf{=17892}

\therefore\boxed{\mathsf{Required\;sum=17892}}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{7cm}$\\\underline{\textbf{Sum of first n natural numbers:}}\\\\\mathsf{1+2+3+\;.\;.\;.\;.\;.+n=\dfrac{n(n+1)}{2}}\\$\end{minipage}}

Similar questions