Math, asked by ayushbarua8411, 1 month ago

find the sum of all natural numbers which are less than 500 and also which are multiplr of 7

Answers

Answered by ItzAshi
187

Answer:

Explanation:

Question :

Find the sum of all natural numbers which are less than 500 and also which are multiple of 7

Solution :

{\bold{\red{❖ \:  \:  \: }}}{\bold{\bf{\underline{According \:  to  \: the \:  question}}}} \\  \\

{\bold{\sf{: \:  ⟼  \:  \:  \:  \:  \: a_{(first  \: term)}  \: = \:  7}}} \\

{\bold{\sf{:  \: ⟼  \:  \:  \:  \:  \: d_{(common \:  difference)} \:  =  \: 7}}} \\

{\bold{\sf{:  \: ⟼  \:  \:  \:  \:  \: l_{(last  \: term)}  \: = \:  497}}} \\  \\

The given series (7, 14, 21, 28, 35 . . . 497) is in arithmetic progression and we need to find the number of terms

Let's the no. of terms be n, then the equation will be -

{\bold{\rm{:  \: ⟼  \:  \:  \:  \:  \: a  \: +  \: (n \:  -  \: 1)d  \: = \:  497}}} \\  \\

{\bold{\rm{: \:  ⟼  \:  \:  \:  \:  \: 7  \: +  \: (n \:  -  \: 1)7  \: = \:  497}}} \\  \\

{\bold{\rm{: \:  ⟼  \:  \:  \:  \:  \: 7  \: +  \: 7n \:  - \:  7  \: = \:  497}}} \\  \\

{\bold{\rm{:  \: ⟼  \:  \:  \:  \:  \: 7n  \: =  \: 497}}} \\  \\

{\bold{\rm{:  \: ⟼  \:  \:  \:  \:  \: n  \: = \:  \frac{497}{7}}}} \\  \\

:  \: ⟼ \:  \:  \:  \:  \: {\large{\bf{\orange{  \:  \:  \:  \:  \: n = 71}}}} \\  \\

{\bold{\bf{\pink{Now  \: we  \: have \:  to  \: calculate  \: the \:  sum  \: of  \: series}}}} \\  \\

We know that :

{\large{\red{  \: ✠  \:  \:  \:  \:  \:}}}{\bold{\underline{\boxed{\rm{S  \:   =  \: \: \frac{n}{2}(a  \: + \:  l)}}}}} \\  \\

{\bold{\bf{\pink{Putting \:  values  \: in  \: formula : }}}} \\  \\

{\bold{:  \: ⟼  \:  \:  \:  \:  \:}}{\bold{\rm{S  \: =  \: \frac{71}{2} \: (7  \: + \:  497)}}} \\  \\

{\bold{:  \: ⟼  \:  \:  \:  \:  \:}}{\bold{\rm{S  \: =  \: \frac{71}{2} \: (504)}}} \\  \\

{\bold{:  \: ⟼  \:  \:  \:  \:  \:}}{\bold{\rm{S  \: =  \: 71  \: (252)}}} \\  \\

 {\bold{:  \: ⟼  \:  \:  \:  \:  \:}}{\large{\bf{\orange{S  \: =  \: 17892}}}} \\  \\

Hence, the sum of all natural numbers which are less than 500 and are multiple of 7 is 17892

Answered by Anonymous
29

Here all natural numbers which are less than 500 and also which are multiple of 7 are

7 , 14 , 21 , 28 , 35 ,...., 497

First term = a = 7

2nd term = 14

3rd term = 21

4th term = 28

2nd term - 1st term = 3rd term - 2nd term

So the numbers from an arithmetic progression

Hence the required sum

=7+14+21+28+35+-------+497

=7(1+2+3+4+5+------+71)

\sf{ = 7 \times \dfrac{71(71 + 1)}{2} }

\sf{ = 7 \times \dfrac{71 \times 72}{2} }

=7×71×36

=17892

Similar questions