Math, asked by arsudevishnu, 7 months ago

find the sum of all odd number from 1 to 150​

Answers

Answered by moumitadas97
1

Step-by-step explanation:

This is your answer

❤️ please mark as branailest

Attachments:
Answered by SavageBlast
112

Given:-

  • An A.P 1, 3, 5, . . . . . , 149

To Find:-

  • Sum of the A.P

Formula used:-

  • {\boxed{a_n= a+(n-1)d}}

  • {\boxed{S_n=\dfrac{n}{2}(a+l)}}

Solution:-

Here,

  • a = 1

  • d = 3 - 1 = 2

  • a_n\:or\:l\:=149

Now,

\implies\:a_n= a+(n-1)d

\implies\:149= 1+(n-1)2

\implies\:149= 1+2n-2

\implies\:2n=149+1

\implies\:n=\dfrac{150}{2}

\implies\:n=75

Now using,

\implies\:S_n=\dfrac{n}{2}(a+l)

\implies\:S_n=\dfrac{75}{2}(1+149)

\implies\:S_n=\dfrac{75}{2}\times150

\implies\:S_n=75\times75

\implies\:S_n=5625

Hence, The sum of all odd numbers from 1 to 150 is 5625.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Formulas:-

  • S_n=\dfrac{n}{2}[2a+(n-1)d]

  • S_n=\dfrac{n}{2}[a+a+(n-1)d]

  • S_n=\dfrac{n}{2}(a+a_n)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions