Math, asked by NainaMehra, 1 year ago

Find the sum of all odd numbers between 0 and 50.

Answers

Answered by Anonymous
12

HEY THERE!!!



Let to be First term 'a' and Common difference 'd'.



Firstly,all odd numbers between 0 and 50 which are given below in the form of Arithmetic Sequence or Progression;



1,3,5,7,9,11.....49



Now, Write in Summation of Arithmetic Sequence or Progression;-




Let Sn = 1+3+5.....49



Here,



First term (a)= 1



Common difference (d)=2



Last terms= 49




Let the number of terms be 'n'



Then,



Tn =a+(n-1)d



Substitute the value of the Required terms in Above Formula;-



Tn =a+(n-1)d



=> 1+(n-1)2 = 49



=> 1+2n-2= 49



=> -1+2n=49



=>2n=49+1



=> 2n=50



=> n=50/2



=> n=25



Now, Using Formula of Summation of terms which known as Sum of terms;-



 \implies \: Sn \: = \frac{n}{2} (a + l) \\ \\ \\ \implies \: Sn \: = \frac{25}{2} (1+ 49) \\ \\ \implies \: Sn = \frac{25}{ 2} {(50)}\\ \\ \\ \implies \: Sn = \frac{25}{ \cancel{2} }{( \cancel50)} \\ \\ \\ \\ \implies \: 25 \times 25 = 625 \\ \\ \\ \\ \implies \: 625



Hence, 625 are the sum of all odd numbers between 0 and 50.

Answered by Anonymous
10

\underline{\underline{\mathfrak{\large{Solution : }}}}




\underline{\mathsf{To \:  Find \:  \longrightarrow  Sum  \: of \:  all \:  odd  \: no.s  \: }} \\  \underline { \mathsf{between \:  0 \:  and \:  50.}}<br />




\textsf{We know that : } \\ \\<br /><br />\mathsf{\longrightarrow First \: odd \: no. \: after \: 0 \: is \: 1 .} \\ \\<br /><br />\mathsf{\longrightarrow Last \: odd \: no. \: before \: 50 \: is \: 49.} \\ \\<br /><br />\mathsf{\longrightarrow Difference \: between \: two \: consecutive \: odd \: no.s \: are \: 2.}<br /><br />




\textsf{The mathematical form for our solution is : }



 \\ \mathsf{= \: 1 \: + \: 3 \: + \: ............. \: + \: 49} \\ \\<br />\textsf{The above series forms an Arithmetic Progression.}<br /> \\  \\ <br />\textsf{Where,} \\ \\<br /><br />\mathsf{\longrightarrow First \: term (a) \: = \: 1 } \\ \\<br />\mathsf{\longrightarrow Common \: difference (d) \: = \: 2 } \\ \\<br /><br />\mathsf{\longrightarrow Last \: term (l) \: = \: 49}<br />


\underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}(a \: + \: l)}}<br /><br />




\textsf{So, in order to find sum of this series.}  \\  \textsf{First of all, we need to find its no. of terms.}



\underline{\textsf{Now,}}  \\  \\ \underline{\textsf{Using Formula : }} \\ \\<br /><br />\boxed{\mathsf{\implies l \: = \: a \: + \: (n \:  -  \: 1))d}}<br /><br />



<br />\mathsf{\implies 49 \: = \: 1 \: + \: ( n \: - \: 1)2} \\ \\<br />\mathsf{\implies 49 \: - \: 1 \: =  \: ( n \: - \: 1)2} \\ \\<br /><br />\mathsf{\implies 48 \: = \: (n \: - \: 1)2} \\ \\<br /><br />\mathsf{\implies \dfrac{48}{2} \: = \: ( n \: - \: 1)} \\ \\<br /><br />\mathsf{\implies 24 \: = \: n \: - \: 1} \\ \\<br /><br />\mathsf{\implies n \: = \: 24 \: + \: 1 } \\ \\<br /><br />\mathsf{\therefore \quad n \: = \: 25}




\underline{\large{\textsf{Now,}}}


<br />\mathsf{\implies S_{n} \: = \: \dfrac{n}{2}( a \: + \: l)} \\ \\<br /><br />\mathsf{\implies S_{25} \: = \: \dfrac{25}{2}( 1 \: + \: 49 )} \\ \\<br /><br />\mathsf{\implies S_{25} \: = \: \dfrac{25}{2} \: \times \: 50} \\ \\<br /><br />\mathsf{\implies S_{25} \: = \: 25 \: \times \: 25} \\ \\<br /><br />\mathsf{\therefore \quad S_{25} \: = \: 625}





<br />\boxed{\large{\textsf{The required sum is 625.}}}







\underline{ \textsf{More to know : }} \\ \\<br /><br />\mathsf{\implies Sum \: of \: first \: n \: odd \: no.s \: = \: {n}^{2}}

Steph0303: Great answer :)
Anonymous: Thanks Bhaiya !
Steph0303: :-)
FuturePoet: Perfect !
Anonymous: Thanks !
FuturePoet: Amazing !
Similar questions