Math, asked by nanmenon2, 3 months ago

Find the sum of all terms of an A.P. if the common difference is -2, its first term
is 100 and the last term is - 10.

Answers

Answered by Anonymous
72

Answer:

2530

Step-by-step explanation:

a=100, d=-2,

Last term Tn =-10

Tn=a+(n-1)d

-10=100+(n-1)(-2)

-110=(n-1)(-2)

n-1=-110/-2=55

Now Sum of all terms

=55/2( 200 + 54*-2 )

=55/2*92

=55*46=2530

Answered by SarcasticL0ve
97

\sf Given \begin{cases} & \sf{First\:term,\: a = \bf{100}}  \\ & \sf{Common\:diffrence,\:d = \bf{-2}} \\ & \sf{Last\:term,\: l = \bf{-10}} \end{cases}\\ \\

To find: Sum of all terms of an A.P.

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Let number of terms of an A.P. be "n".

⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{n^{th}\:term\:of\:an\:A.P.\:is\:given\;by,}}}\\ \\

\star\;{\boxed{\sf{\pink{a_n = a + (n - 1)d}}}}\\ \\

:\implies\sf - 10 = 100 + (n - 1) \times - 2\\ \\

:\implies\sf - 10 - 100 = (n - 1) \times - 2\\ \\

:\implies\sf - 110 = (n - 1) \times - 2\\ \\

:\implies\sf (n - 1) = \cancel{ \dfrac{-110}{-2}}\\ \\

:\implies\sf (n - 1) = 55\\ \\

:\implies{\underline{\boxed{\frak{\purple{n = 54}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Number\:of\:terms\:in\:an\:A.P.\:is\: {\textsf{\textbf{54}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\bf{\dag}\;{\underline{\frak{Sum\:of\:all\:terms\:of\:A.P.\:is\:given\;by,}}}\\ \\

\star\;{\boxed{\sf{\pink{S_n = \dfrac{n}{2}(a + l)}}}}\\ \\

:\implies\sf S_{54} = \dfrac{54}{2}(100 + (-10))\\ \\

:\implies\sf S_{54} = \dfrac{54}{2}(100 - 10)\\ \\

:\implies\sf S_{54} = \dfrac{10}{ \cancel{2}} \times \cancel{90}\\ \\

:\implies\sf S_{54} = 54 \times 45\\ \\

:\implies{\underline{\boxed{\frak{\purple{S_{54} = 2430}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Sum\:of\:all\:terms\:of\:an\:A.P.\:is\: {\textsf{\textbf{2430}}}.}}}


Cosmique: Excellent! :3
TheValkyrie: Awesome!
Similar questions