Math, asked by itzpriya22, 5 months ago

Find the sum of all terms of an A.P. if the common difference is -2, its first term
is 100 and the last term is - 10.​


Anonymous: hum kisiko message karr?
Anonymous: mai bhi muttalo se baat nhi karta ...
Anonymous: tera nhi puch rah tha jis user na is question ko pucha usna mujha message kia toaina uska naam usese comments me pucha
Anonymous: hello miss priya ji ek baat poochni thi
Devkrishna7: hii
Anonymous: hiiii
Anonymous: jiiii

Answers

Answered by Anonymous
14

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • First term ( a ) = 100

  • Last term ( a{n} ) = -10

  • Common difference ( d ) = -2

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Sum of all terms ( 100.......-10 )

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

We know ,

'n'th term , a{n} = a + ( n - 1 )d

Putting values , we get..

➻ -10 = 100 + ( n - 1 )-2

➻ -10 - 100 = -2n + 2

➻ -110 = -2n + 2

➻ 2n = 2+110

➻ 2n = 112

➻ n = 56

Hence , there are 56 terms.

We know ,

 \\  \\  \boxed{ \bf \: s_{n} =  \frac{n}{2} (1st \: term + last \: term) } \\  \\

Here ,

  • s{n} = sum of 'n' terms.

  • n = 56.

  • 1st term is 100.

  • Last term is -10.

Putting values , we get..

 \sf \:  s_{n} =   \cancel\frac{56}{2} (100 +  (- 10)) \\  \\  \sf \:  s_{n} = 28(100 - 10) \\  \\  \sf \:   s_{n}  = 28(90) \\  \\  \boxed{ \bf{ \pink{ s_{n} = 2520 }}} \\

Hence , sum is 2520.


llBrandedKaminall: hiii
llBrandedKaminall: DEAR
Answered by BrainlyShadow01
23

To Find:-

  • Find the sum of all the terms of an A.P and common difference.

Given:-

  • The first term is 100 and last term is-10 and common difference is -2.

Solution:-

Here we know that

a = 100 ; l = -10 ; d = -2 ; s = ?

\tt \implies { \: an \:   =  \: a \:  +  \: ( \: n \:  -  \: 1 \: ) \: d \:  }

\tt \implies { \: -10 \:   =  \: 100 \:  +  \: ( \: n \:  -  \: 1 \: ) \: -2 \:  }

\tt \implies { \:  - 10 \:   =  \:  100 \:  -  \: 2n \:  +  \: 2 \:  }

\tt \implies { \:  - 10 \:   =  \:  102 \:  -  \: 2n \:   }

\tt \implies { \:  - 10 \:  -  \: 102  =  \:  -  \: 2n \: }

\tt \implies { \:  - 112 \:   = -  \: 2n \: }

\tt \implies { \: n \:  =  \:  \frac{112}{2} \:  }

\tt \implies { \: n \:  =  \: 58 \:  }

Sn = n/2 [ a + l ]

Sn = 58/2 [ 100 + ( -10 ) ]

Sn = 58/2 [ 90 ]

Sn = 58/2 × 90

Sn = 28 × 90

Sn = 2520

Similar questions