Math, asked by Anonymous, 4 hours ago

Find the sum of all the 11 terms of an AP whose middle terms is 30.


No spam!! ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

  • An AP series consists of 11 terms whose middle term is 30.

Since, Number of terms, n = 11

So, there is only 1 middle term.

\rm\implies \:Middle \: term =  {\bigg[\dfrac{11 + 1}{2} \bigg]}^{th} =  {6}^{th} \: term

So, it means

\rm :\longmapsto\:a_6 = 30

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:a + (6 - 1)d = 30

\rm\implies \:\boxed{\tt{ a + 5d = 30}} -  -  -  - (1)

Now,

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Thus,

\rm :\longmapsto\:S_{11} = \dfrac{11}{2}\bigg(2a + (11 - 1)d \bigg)

\rm :\longmapsto\:S_{11} = \dfrac{11}{2}\bigg(2a + 10d \bigg)

\rm :\longmapsto\:S_{11} = \dfrac{11}{2} \times 2 \times \bigg(a + 5d \bigg)

\rm :\longmapsto\:S_{11} = 11 \times 30

 \red{ \bigg\{  \sf \: \because \: using \: equation \: (1) \bigg\}}

\rm\implies \:\boxed{\tt{  \:  \:  \:  \:  \:  \large{ S_{11} \:  =  \: 330 }\:  \:  \:  \:  \:  \: }}

Similar questions