Math, asked by deepikakalupati27, 5 months ago

find the sum of all the multiples of 7 between 100 and 200​

Answers

Answered by koulkrishna18
0

Answer:

Answer: 105 , 112 , 119 , 126 , 133 , 140 , 147 , 154 , 161 , 168 , 175 , 182 , 189 , 196 .

Answer: 105 , 112 , 119 , 126 , 133 , 140 , 147 , 154 , 161 , 168 , 175 , 182 , 189 , 196 .therefore total multiples of 7 b/w 100 & 200 are :- 14 .

Answered by vanshikabansal1630
0

Answer:

Multiples of 7 between 100 and 200 :

105 , ...... , 196

First term = a = 105

d = 7

a_n=a+(n-1)d

196=105+(n-1)(7)

196-105=(n-1)(7)

\begin{gathered}\frac{196-105}{7}=n-1 \\\frac{196-105}{7}+1=n\end{gathered}

7

196−105

=n−1

7

196−105

+1=n

14 = n

Sum of multiples of 7 between 100and 200 :

\begin{gathered}S_n=\frac{n}{2}(a+a_n) \\S_{14}=\frac{14}{2}(105+96) \\S_{14}=1407\end{gathered}

S

n

=

2

n

(a+a

n

)

S

14

=

2

14

(105+96)

S

14

=1407

Hence The sum of multiples of 7 between 100 and 200 is 1407

plz mark as brainliest

Similar questions