Math, asked by Maulik1230000, 9 months ago

find the sum of all the non negative terms of the following sequence 100,97,94.....

and the answer should be 1717

Answers

Answered by priyanshkp01
7

here is your solution.

Attachments:
Answered by Syamkumarr
0

Answer:

The correct answer is 1717

Given problem:

find the sum of all the non negative terms of the following sequence 100,97,94.....

Step-by-step explanation:

Given number sequence is 100, 97, 94  ...  [ which is in AP ]

here first term a = 100 and

common difference d = t₂ - t₁ = 97 - 100 = -3

here we need to find sum non- negative terms of the sequence

Let t_{n} be the first negative term

t_{n}  = a + (n-1)d  ≤ 0

        100 + (n-1)(-3) ≤ 0

        100 - 3n +3 ≤ 0    

        103 - 3n ≤ 0  

        103 ≤  3n

         \frac{103}{3} \leq  n  

        34.4 ≤  n      

from this we can conclude that if n is greater than 34  then the term will be negative

⇒ number of non negative terms = 34

The formula for sum of n terms in an AP = \frac{n}{2} [ 2a + (n-1)d ]  

⇒  sum 34 terms in AP =  \frac{34}{2} [ 2(100) + (34-1)(-3) ]  

                                      = 17 [ 200) + (33)(-3) ]

                                      = 17 [ 200 -99 ]

                                      = 17 [ 101 ]

                                      = 1717

Similar questions