Math, asked by alka1521, 1 year ago

find the sum of all the number between 100 and 200 which are divisible by 7?

Answers

Answered by Anonymous
12
\underline{\underline{ \large{ \mathfrak{Solution : }}}} \\ \\ \\
\textsf{Numbers between 100 and 200 which is}\\ \sf divisible \: by \: 7 \longrightarrow 105 , 112 , ..... , 196. \\ \\
\textsf{Here , we can observe that this sequence } \\ \textsf{forms an Arithmetic Progression.} \\ \\
 \underline{ \textsf{Where :}} \\ \\ \sf \implies First \: term (a) \: = \: 105 \\ \\ \sf \implies Common \: difference (d) \: = \: 112 \: - \: 105 \: \\ \sf \qquad \qquad \qquad \qquad \qquad \qquad \: \: = \: 7<br />\\ \\ \sf \implies Last \: term(l) \: = \: 196 \\ \\
\textsf{Now,} \\ \\ \sf \implies l \: = \: a \: + \: ( n \: - \: 1 )d \\ \\ \sf \implies 196 \: = \: 105 \: + \: ( n \: - \: 1 )7 \\ \\ \sf \implies 196 \: - \: 105 \: = \: ( n \: - \: 1 )7 \\ \\ \sf \implies 91 \: = \: ( n \: - \: 1)7 \\ \\ \sf \implies 91 \: \div \: 7 \: = \: n \: - \: 1 \\ \\ \sf \implies 13 \: = \: n \: - \: 1 \\ \\ \sf \implies n \: = \: 13 \: + \: 1 \\ \\ \sf \: \therefore \: n \: = \: 14 \\ \\
\underline{\textsf{Again, }} \\ \\ \sf \implies S_n \: = \: \dfrac{n}{2}(a \: + \: l) \\ \\ \sf \implies S_{14 }\: = \: \dfrac{14}{2}( 105 \: + \: 196 ) \\ \\ \sf \implies S_{14 }\: = \: 7 \: \times \: 301 \\ \\ \sf \: \therefore \: S_{14 }\: = \: 2107<br />

alka1521: thankeeww so much
Anonymous: Hii
Anonymous: Nice answer
Answered by BrainlyMOSAD
5
hey mate !!

here is your answer !!

in the questions given the sum of all the numbers between 100 and 200 which are divisible by 7 such as 105 , 112, 119, -- , --, --, 196 .

the given sequence terms 105 ,112, 119 - - - 196 it's form of an Ap.

here given,

first term a1 = 105

second term a2 = 112,

third term a3 = 119

a_{n} term = 196

common difference ( d) = a2 -a1

d = 112 - 105

d = 7

now we find,

a_{n} = a ( n - 1 ) d

196 = 105 ( n - 1 ) 7

196 - 105 = ( n - 1 ) 7

91 = 7 ( n - 1 )

91 = 7n - 7

91 + 7 = 7n

98 = 7n

n \: = \frac{98}{7} = 14

n = 14

again we using formula ,

S_{n} = \frac{n}{2} (a + a_{n}) \\ \\ S_{14} = \frac{14}{2} (105 + 196) \\ \\ S_{14} = \frac{14}{2} (301) \\ \\ S_{14} = 7 \times 301 \\ \\ \\ S_{14} = 2107.

therefore sum of its n terms equal to 2107.

be brainly

alka1521: thankeww
Similar questions