Math, asked by HarasitBiswas, 1 year ago

find the sum of all the odd numbers from 1 to 100​

Answers

Answered by Anonymous
2

Answer:

he guess here your answer:--

Step-by-step explanation:

can we write this series ......

1+3+5+7+....+99.

late here...

a=1,d= 2,l= 99,n=50

by using this formula

s= n/2[(a +l]

s= 99/2(1+99)

s= 99/2*100

s= 4950.

I hope this is right and helpful for u

please follow me!! ✌️✌️


HarasitBiswas: thank you so much
Answered by SavageBlast
135

Given:-

  • An A.P 1, 3, 5, . . . . . , 99

To Find:-

  • Sum of the A.P

Formula used:-

  • a_n= a+(n-1)d

  • S_n=\dfrac{n}{2}(a+l)

where,

  • a = First term

  • n = No. of terms

  • d = Common Difference

  • l = last term

  • a_n=\:n^{th}\:term

  • S_n=\:Sum\:of\:n^{th}\:term

Solution:-

Here,

  • a = 1

  • d = 3 - 1 = 2

  • a_n\:or\:l\:=99

Now,

\implies\:a_n= a+(n-1)d

\implies\:99= 1+(n-1)2

\implies\:99= 1+2n-2

\implies\:2n=99+1

\implies\:n=\dfrac{100}{2}

\implies\:n=50

Now using,

S_n=\dfrac{n}{2}(a+l)

\implies\:S_n=\dfrac{50}{2}(1+99)

\implies\:S_n=25×100

\implies\:S_n=2500

Hence, The sum of all even numbers from 1 to 100 is 2500.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Formulas:-

  • S_n=\dfrac{n}{2}[2a+(n-1)d]

  • S_n=\dfrac{n}{2}[a+a+(n-1)d]

  • S_n=\dfrac{n}{2}(a+a_n)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions