Math, asked by lunawatharchiejain, 1 month ago

find the sum of all the rational roots of the equation (above in the picture)​

Attachments:

Answers

Answered by ItzAshi
47

Step-by-step explanation:

{\LARGE{\mathbf{\underline{\red{Solution :→}}}}} \\

Given :-

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \: _X \: \frac{3}{4} \: ( log_{2}  \: x)² \:  + \:   log_{2} \:  x -  \: \frac{5}{4} \:  =  \: √2}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \: \frac{3}{4}( log_{2} \:  x)²  \: +   \: log_{2} \:  x -  \: \frac{5}{4}  \: =  \: log_X \: √2}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \: \frac{3}{4}( log_{2} \:  x)²  \: +   \: log_{2} \:  x - \:  \frac{5}{4} \:  = \:  \frac{1}{2log_2 \: x}}}} \\  \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \: 3(log_2 \: x)³  \: +  \: 4(log2 \: x)²  \: -  \: 5(log_2 \: x) \:  - \:  2  \: = \:  0}}} \\  \\

{\bold{\sf{\pink{Put, \:  log_2 \: x \:  =  \: y}}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  3y³ +  \: 4y²  \: -  \: 5y \:  -  \: 2  \: = \:  0}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  (y  \: - \:  1) (y  \: +  \: 2) (3y  \: +  \: 1)  \: =  \: 0}}} \\  \\

{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  y  \: = 1,  \: -2,  \: \frac{-1}{3}}}} \\  \\ </u></p><p><u>[tex]{\bold{\sf{: \:  ⟹ \:  \:  \:  \:  \:  log_2 \: x = 1,  \: -2,  \: \frac{-1}{3}}}} \\  \\

{\bold{\sf{: \:  ⟹  \:  \:  \:  \:  \: x  \: =  \: 2,  \: \frac{1}{2⅓},  \: \frac{-1}{4}}}} \\  \\

Hence, equation has exactly 3 solutions

Similar questions