Math, asked by mohammedkhalid6786, 6 months ago

find the sum of all the terms of an AP 18, 15 1/2 , 13 ,....

Answers

Answered by bhattak9617
1

Step-by-step explanation:

a \:  = 18 \\ d = 15 \frac{1}{2}  - 18 =   - \frac {5}{2}  \\

s(n) =  \frac{n}{2} (2a + (n - 1)d) \\ \\ s(n) =  \frac{n}{2} (2 \times 18 + (n - 1) \times ( -  \frac{5}{2} )) \\  \\ s(n) =  \frac{n}{2} (36 -  \frac{5n}{2}  +  \frac{5}{2} ) \\ \\  s(n) =  \frac{n}{2} ( \frac{72}{2}   -  \frac{5n}{2}  +  \frac{5}{2} ) \\  \\ s(n) =  \frac{n}{2} ( \frac{72 + 5 - 5n}{2}) \\  \\ s(n) =  \frac{n}{2} ( \frac{77 - 5n}{2} ) \\  \\s(n) =  \frac{77n - 5n {}^{2} }{4}

put \: the \: number \: of \: terms \: in \: place \: of \: (n)

Similar questions