Math, asked by karansingh130, 6 months ago

Find the sum of all three digit natural numbers, which are divisible by 7.​

Answers

Answered by Anonymous
50

\huge\underline{\bf{Solution}}

※ The smallest and largest number of 3 digits, which are divisible by 7 are 105 and 994 is respectively.

※ So, the sequence of 3 digit numbers which are divisible by 7 are 105, 112, 119, ....., 994.

We know that

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\bf{\bigstar{a_n = a + (n - 1)d{\bigstar}}}}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\tt{Here}\begin{cases} \sf{a = 105}\\ \sf{d = 7}\\ \sf{a_n = 994}\end{cases}\end{lgathered} \:\end{lgathered}\end{lgathered}

\tt\longmapsto{a_n = 994}

\tt\longmapsto{a + (n - 1)d = 994}

\tt\longmapsto{105 + (n - 1) \times 7 = 994}

\tt\longmapsto{7n - 7 = 994 - 105}

\tt\longmapsto{7n - 7 = 889}

\tt\longmapsto{7n = 889 + 7}

\tt\longmapsto{7n = 896}

\tt\longmapsto{n = \dfrac{886}{7}}

\tt\longmapsto{n = 128}

Now, we will find sum of the given A.P. by using the formula

\: \: \: \: \: \: \: \: \: \: \: \: \boxed{\bf{\bigstar{S_n = \dfrac{n}{2}[2a + (n - 1)d]{\bigstar}}}}

\begin{lgathered}\begin{lgathered}\begin{lgathered}\tt{Here}\begin{cases} \sf{a = 105}\\ \sf{d = 7}\\ \sf{n = 128}\end{cases}\end{lgathered} \:\end{lgathered}\end{lgathered}

\tt:\implies\: \: \: \: \: \: \: \: {S_{128} = \dfrac{128}{2}[2(105) + (128 - 1) \times 7]}

\tt:\implies\: \: \: \: \: \: \: \: {S_{128} = 64[210 + (127) \times 7]}

\tt:\implies\: \: \: \: \: \: \: \: {S_{128} = 64[210 + 889]}

\tt:\implies\: \: \: \: \: \: \: \: {S_{128} = 64 \times 1099}

\tt:\implies\: \: \: \: \: \: \: \: {S_{128} = 70336}

\large{\underline{\underline{\green{Required\: Sum = 70,336}}}}

━━━━━━━━━━━━━━━━━━━━━━

Answered by Anonymous
64

Smallest 3 digit number divisible by 7, (a) = 105

Largest 3 digit number divisible by 7, (a_n) = 994

Common difference, (d) = 7

Therefore, the sequence of 3 digit numbers which are divisible by 7 are 105, 112, 119, ....., 994.

⠀⠀⠀⠀

\star\;{\underline{\frak{We\;know\;that,}}}\\

⠀⠀⠀

\star\;{\boxed{\sf{\purple{a_n = a + (n - 1)d }}}}\\

:\implies\sf a_n = 994  \\

⠀⠀⠀

:\implies\sf a + (n - 1)d = 994  \\

⠀⠀⠀

:\implies\sf 105 + (n - 1) \times 7 = 994  \\

⠀⠀⠀

:\implies\sf  7n - 7 = 994 - 105 \\

⠀⠀⠀

:\implies\sf   7n - 7 = 889\\

⠀⠀⠀

:\implies\sf 7n = 889 + 7  \\

⠀⠀⠀

:\implies\sf   7n = 896\\

⠀⠀⠀

:\implies\sf n= \cancel{\dfrac{886}{7}} \\

⠀⠀⠀

:\implies\sf n=128  \\

⠀⠀⠀

\begin{lgathered}\star\;{\underline{\frak{For\;finding\;sum,}}}\\ \\\end{lgathered}

⠀⠀⠀

\star\;{\boxed{\sf{\pink{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}</p><p> }}}\\

⠀⠀⠀

:\implies\sf S_{128} = \dfrac{128}{2}\bigg\lgroup2(105) + (128 - 1) \times 7\bigg\rgroup \\

⠀⠀⠀

:\implies\sf S_{128} = \dfrac{128}{2}\bigg\lgroup2(105) + (128 - 1) \times 7\bigg\rgroup\\

⠀⠀⠀

:\implies\sf S_{128} = 64\bigg\lgroup210 + (127) \times 7\bigg\rgroup  \\

⠀⠀⠀

:\implies\sf  S_{128} = 64\bigg\lgroup210 + 889 \bigg\rgroup\\

⠀⠀⠀

:\implies\sf  S_{128} = 64 \times 1099 \\

⠀⠀⠀

:\implies\sf   S_{128} = 70336 \\⠀⠀⠀

Similar questions