Math, asked by ekhlaquehussain2920, 2 months ago

Find the sum of AP 2,7,12 to 25 terms

Answers

Answered by Ladylaurel
21

Answer :-

  • The sum of first 25th terms of an A.P. : 2,7,12 ... is 1550.

Step-by-step explanation:

To Find :-

  • The sum of first 25 terms.

Given, A.P. sequence = 2, 7, 12 . . . .

Finding the common difference,

➝ 7 - 2 = 5

➝ 12 - 7 = 5

Hence, The common difference is 5.

⠀⠀⠀⠀⠀ ⠀⠀____________________

We know,

 \underline{ \boxed{\sf{S = \dfrac{n}{2} \:  [2a + (n - 1)d]}}}

Where,

  • a = first term.
  • d = common difference.
  • n = number of terms.

According the question,

 \longrightarrow \: \sf{S = \dfrac{n}{2} \:  [2a + (n - 1)d]}

By putting the values,

 \\  \longrightarrow \: \sf{S = \dfrac{25}{2} \:  [2 \cdot 2 + (25 - 1)5]}

By simplifying,

\\  \longrightarrow \: \sf{S = \dfrac{25}{2} \:  [4 + (25 - 1)5]}

\\  \longrightarrow \: \sf{S = \dfrac{25}{2} \:  [4 + (24)5]}

\\  \longrightarrow \: \sf{S = \dfrac{25}{2} \:  [4 + 120]}

\\  \longrightarrow \: \sf{S = \dfrac{25}{2} \:  [124]}

\\  \longrightarrow \: \sf{S =  \cancel{\dfrac{25}{2}} \:  [124]}

\\  \longrightarrow \: \sf{S = 12.5 \:  [124]}

 \\ \longrightarrow \: \boxed{\sf{S = 1550}}

⠀⠀⠀⠀⠀ ⠀⠀∴ The sum of 25 terms is 1550.

Similar questions