Math, asked by Anonymous, 5 days ago

Find the sum of below series upto n terms

1.2² + 2.3² + 3.4² + . . . ​

Answers

Answered by anindyaadhikari13
7

\textsf{\large{\underline{Solution}:}}

The nth term of the series is given as:

 \rm: \longmapsto T_{n} = n {(n + 1)}^{2}

 \rm: \longmapsto T_{n} = n( {n}^{2}  + 2n + 1)

 \rm: \longmapsto T_{n} = {n}^{3}  + 2 {n}^{2} +n

Therefore, the sum of the series will be:

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} T_{k}

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} \big( {k}^{3} + 2 {k}^{2} + k  \big)

Separating the terms, we get:

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} {k}^{3} +  \sum_{k = 1}^{n}2 {k}^{2} + \sum_{k = 1}^{n} k

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} {k}^{3} +  2\sum_{k = 1}^{n}{k}^{2} + \sum_{k = 1}^{n} k

We know that:

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{3} =   \bigg[\frac{n(n + 1)}{2}  \bigg]^{2}

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{2} =   \frac{n(n + 1)(2n + 1)}{2}

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{} =   \frac{n(n + 1)}{2}

Substituting the values, we get:

 \displaystyle\rm: \longmapsto S_{n} =   \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  +  2 \cdot\frac{n(n + 1)(2n + 1)}{6}  + \dfrac{n(n +1 )}{2}

 \displaystyle\rm: \longmapsto S_{n} =   \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  + \frac{n(n + 1)(2n + 1)}{3}  + \dfrac{n(n +1 )}{2}

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{ {n}^{} {(n + 1)}^{}  }{2}  + \frac{2(2n + 1)}{3} + 1 \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{} {(n + 1)}^{} + 4(2n + 1) + 6  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 3n+ 8n +4 + 6  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 11n +10  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 6n  + 5n+10  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3n(n +2)  + 5(n+2)}{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{(3n + 5)(n+2)}{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)(n + 2)(3n + 5)}{12}

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \displaystyle1. \: \: \rm \sum^{n}_{i = 1}k = kn

 \displaystyle2. \: \: \rm \sum^{n}_{i = 1}i = \dfrac{n(n + 1)}{2}

 \displaystyle3. \: \: \rm \sum^{n}_{i = 1} {i}^{2} = \dfrac{n(n + 1)(2n + 1)}{6}

 \displaystyle4. \: \: \rm \sum^{n}_{i = 1} {i}^{3} = \bigg( \dfrac{n(n + 1)}{2} \bigg)^{2}

 \displaystyle5. \: \: \rm \sum^{n}_{i = 1} 2i = n(n+1)

 \displaystyle6. \: \: \rm \sum^{n}_{i = 1} \big(2i-1\big)= n^{2}


anindyaadhikari13: Thanks for the Brainliest :)
Answered by SANDHIVA1974
1

Answer:

[tex]\textsf{\large{\underline{Solution}:}}

The nth term of the series is given as:

 \rm: \longmapsto T_{n} = n {(n + 1)}^{2}

 \rm: \longmapsto T_{n} = n( {n}^{2}  + 2n + 1)

 \rm: \longmapsto T_{n} = {n}^{3}  + 2 {n}^{2} +n

Therefore, the sum of the series will be:

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} T_{k}

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} \big( {k}^{3} + 2 {k}^{2} + k  \big)

Separating the terms, we get:

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} {k}^{3} +  \sum_{k = 1}^{n}2 {k}^{2} + \sum_{k = 1}^{n} k

 \displaystyle\rm: \longmapsto S_{n} =  \sum_{k = 1}^{n} {k}^{3} +  2\sum_{k = 1}^{n}{k}^{2} + \sum_{k = 1}^{n} k

We know that:

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{3} =   \bigg[\frac{n(n + 1)}{2}  \bigg]^{2}

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{2} =   \frac{n(n + 1)(2n + 1)}{2}

 \displaystyle\rm: \longmapsto  \sum_{k = 1}^{n} {k}^{} =   \frac{n(n + 1)}{2}

Substituting the values, we get:

 \displaystyle\rm: \longmapsto S_{n} =   \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  +  2 \cdot\frac{n(n + 1)(2n + 1)}{6}  + \dfrac{n(n +1 )}{2}

 \displaystyle\rm: \longmapsto S_{n} =   \dfrac{ {n}^{2} {(n + 1)}^{2}  }{4}  + \frac{n(n + 1)(2n + 1)}{3}  + \dfrac{n(n +1 )}{2}

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{ {n}^{} {(n + 1)}^{}  }{2}  + \frac{2(2n + 1)}{3} + 1 \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{} {(n + 1)}^{} + 4(2n + 1) + 6  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 3n+ 8n +4 + 6  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 11n +10  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3 {n}^{2} + 6n  + 5n+10  }{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{3n(n +2)  + 5(n+2)}{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)}{2} \bigg[ \dfrac{(3n + 5)(n+2)}{6} \bigg]

 \displaystyle\rm: \longmapsto S_{n} = \dfrac{n(n + 1)(n + 2)(3n + 5)}{12}

★ Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

 \displaystyle1. \: \: \rm \sum^{n}_{i = 1}k = kn

 \displaystyle2. \: \: \rm \sum^{n}_{i = 1}i = \dfrac{n(n + 1)}{2}

 \displaystyle3. \: \: \rm \sum^{n}_{i = 1} {i}^{2} = \dfrac{n(n + 1)(2n + 1)}{6}

 \displaystyle4. \: \: \rm \sum^{n}_{i = 1} {i}^{3} = \bigg( \dfrac{n(n + 1)}{2} \bigg)^{2}

 \displaystyle5. \: \: \rm \sum^{n}_{i = 1} 2i = n(n+1)

 \displaystyle6. \: \: \rm \sum^{n}_{i = 1} \big(2i-1\big)= n^{2}[/tex]

Similar questions