Math, asked by Nishithaaa, 1 year ago

Find the sum of deviations of the variate values 3, 4, 6, 7, 8, 14 from
their mean.

Answers

Answered by Harsh0022
80

Answer:

Step-by-step explanation:

This is the cprrect solution....

Attachments:
Answered by boffeemadrid
24

Answer:

Step-by-step explanation:

The variate values are:

3, 4, 6, 7, 8, 14

Mean is given by: Mean=\frac{Sum of observations}{total number ofobservations}

Mean=\frac{3+4+6+7+8+14}{6}=\frac{42}{6}=7

Thus, {\overline{x}=7.

Now, {\Delta}x_{1}={\overline{x}-x_{1}=7-3=4

|{\Delta}x_{2}|=|{\overline{x}-x_{2}|=|7-4|=3

|{\Delta}x_{3}|=|{\overline{x}-x_{3}|=|7-6|=1

|{\Delta}x_{4}|=|{\overline{x}-x_{4}|=|7-7|=0

|{\Delta}x_{5}|=|{\overline{x}-x_{5}|=|7-8|=1

|{\Delta}x_{6}|=|{\overline{x}-x_{6}|=|7-14|=7

Sum of deviations of the variate values=|{\Delta}x_{1}|+|{\Delta}x_{2}|+|{\Delta}x_{3}|+|{\Delta}x_{4}|+|{\Delta}x_{5}|+|{\Delta}x_{6}|

=4+3+1+0+1+7=16

Therefore, the sum of deviations of the variate values is 16.

Similar questions