Math, asked by sunitabhavle, 1 year ago

find the sum of find the sum of all even numbers from 1 to 350

Answers

Answered by seriousblack1987
5
The answer is:
Therefore sum of all even numbers from 1 to 350 is 30,800
Answered by SavageBlast
82

Given:-

  • An A.P 2, 4, 6, . . . . . , 350

To Find:-

  • Sum of the A.P

Formula used:-

  • a_n= a+(n-1)d

  • S_n=\dfrac{n}{2}(a+l)

where,

  • a = First term

  • n = No. of terms

  • d = Common Difference

  • l = last term

  • a_n=\:n^{th}\:term

  • S_n=\:Sum\:of\:n^{th}\:term

Solution:-

Here,

  • a = 2

  • d = 4 - 2 = 2

  • a_n\:or\:l\:= 350

Now,

\implies\:a_n= a+(n-1)d

\implies\:350= 2+(n-1)2

\implies\:350= 2+2n-2

\implies\:2n=350

\implies\:n=\dfrac{350}{2}

\implies\:n=175

Now using,

\implies\:S_n=\dfrac{n}{2}(a+l)

\implies\:S_n=\dfrac{175}{2}(2+400)

\implies\:S_n=175×201

\implies\:S_n=35175

Hence, The sum of all even numbers from 1 to 350 is 35175.

━━━━━━━━━━━━━━━━━━━━━━━━━

More Formulas:-

  • S_n=\dfrac{n}{2}[2a+(n-1)d]

  • S_n=\dfrac{n}{2}[a+a+(n-1)d]

  • S_n=\dfrac{n}{2}(a+a_n)

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions