Math, asked by ManasaHV, 4 months ago

Find the sum of first 10 terms of an AP in which the half of the sum of first and last term is 80

Answers

Answered by MaheswariS
0

\textbf{Given:}

\textsf{In an A.P, half of the sum of first and last term is 80}

\textbf{To find:}

\textsf{Sum of the first 10 terms the A.P}

\mathsf{}

\textbf{Solution:}

\textsf{Half of the sum of first and last term is 80}

\implies\mathsf{\dfrac{1}{2}(a+l)=80}

\mathsf{Now,}

\textsf{Sum of the first  10 terms}

\mathsf{=S_{10}}

\mathsf{=\dfrac{n}{2}[a+l]}

\mathsf{=n{\times}\dfrac{1}{2}[a+l]}

\mathsf{=10{\times}80}

\mathsf{=800}

\mathsf{}

\textbf{Answer:}

\textsf{Sum of the  first 10 terms is 800}

\textbf{Find more:}

Find the sum of all the numbers between 200 and 500 which are divisible by 7​

https://brainly.in/question/20660294

Answered by mahek77777
11

\textbf{Given:}

\textsf{In an A.P, half of the sum of first and last term is 80}

\textbf{To find:}

\textsf{Sum of the first 10 terms the A.P}

\mathsf{}

\textbf{Solution:}

\textsf{Half of the sum of first and last term is 80}

\implies\mathsf{\dfrac{1}{2}(a+l)=80}

\mathsf{Now,}

\textsf{Sum of the first  10 terms}

\mathsf{=S_{10}}

\mathsf{=\dfrac{n}{2}[a+l]}

\mathsf{=n{\times}\dfrac{1}{2}[a+l]}

\mathsf{=10{\times}80}

\mathsf{=800}

\mathsf{}

\textbf{Answer:}

\textsf{Sum of the  first 10 terms is 800}

Similar questions