find the sum of first 10 terms of the AP whose 12th term is -13 and the sum of first 4 terms is 24
Answers
Answered by
6
Step-by-step explanation:
ANSWER
Sum of 12 terms=354
⇒
2
12
[2a+(12−1)d]=354
⇒6[2a+11d]=354
⇒2a+11d=59−(i)
∴
Sumofoddterms
Sumofeventerms
=
27
32
∴ Sum of even terms=32x & Sum of odd terms=27x
∴32x+27x=354
⇒59x=354
⇒x=6
∴ Sum of even terms=32×6=192
⇒t2+t4+t6+t8+t10+t12+192
∴a
1
=t2=a+d−(ii)
Common difference=t4−t2=a+3d−a−d=2d
∴ Sum=192
⇒
2
n
[2a+(n−1)d]=192
⇒
2
6
[2(a+d)+5×2d]=192
⇒[2a+2d+10d]=
3
192
=64
⇒2a+12d=64−(iii)
Subtracting (i) from (iii)
d=5
The common difference=5.
Similar questions