Math, asked by aymanismail786pdyva4, 6 months ago

Find the sum of first 12 terms of the arithmetic progression 30, 39, 48......

Answers

Answered by LilBabe
221

Question

Find the sum of first 12 terms of the arithmetic progression 30, 39, 48......

Answer

First find the 12th term :-

 \mathtt{a_{12}  = a_{1} + (n - 1)d}

 \mathtt{a _{12} = 30 + 11(9)}

 \mathtt{a _{12_{term}}  = 129}

Now, let's find the sum

 \mathtt{s_{n} =  \frac{n(a_{1} + a _{n}) }{2}}

 \mathtt{s_{12} =  \frac{12(30 + 129)}{2}}

 \mathtt{s_{12}  =  \frac{1908}{2}}

 \mathtt \red{s_{12} = 984}

Therefore, the sum of 12th term is 984.

Important

The general form of AP is a,a+d,a+2d,a+3d,and so on

\mathtt{S_{n}=\frac{n(a_{1}+a_{n}}{2}}

\mathtt{a_{n}=a_{1}+(n-1)}


MisterIncredible: Brilliant
Answered by SuitableBoy
293

{\huge{\rm{\underline{\underline{Question:-}}}}}

Q) Find the sum of first 12 terms of the Airihmetic Progression 30 , 39 , 48 , ...

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

 \\

Given :

  • A.P. 30 , 39 , 48 , ....

 \\

To Find :

  • Sum of first 12 terms ( s_{12} )

 \\

Solution :

  • First term , a = 30
  • Common difference , d = 39 - 30 = 9
  • number of terms , n = 12

Using the Formula to find sum :

 \boxed{ \sf{s _{n} =  \frac{n}{2}  \{2a + (n - 1)d \}}}

Just put the values here ..

 \mapsto \rm \: s _{12} =  \frac{ \cancel{12}}{ \cancel2}  \{2 \times 30 + (12 - 1)9 \} \\

 \mapsto \rm \: s _{12} = 6 \{60 + 11 \times 9 \}

 \mapsto \rm \: s _  {12} = 6 \{60 + 99 \}

 \mapsto \rm \: s _{12} = 6 \times 159

 \mapsto \underline{ \boxed{ \rm{ \pink{s _{12} = 954}}}}

So ,

The sum of first 12 terms of this A.P. is 954 .

 \\

_________________________

 \\

{\large{\underline{\rm{★\;Know\;More}}}}

Airihmetic Progression : It is a sequence in which adjacent terms differ with a common difference .

{\sf{a_n=a+(n-1)d}}

{\sf{S_n=\dfrac{n}{2}\{2a+(n-1)d\}}}

{\sf{S_n=\dfrac{n}{2}\{a+a_n\}}}

Here ,

  \purple{\ddot{ \smile}} \: \tt  \: a = first \: term \: .

 \green{ \ddot{ \smile}} \:  \tt \: d = common \: difference \: .

 \pink{ \ddot{  \smile}}  \: \tt \: n = no. \: of \: terms \: .

 \blue{ \ddot{ \smile}} \: \tt \: a _{n} =  {n}^{th}  \: term

 \orange{ \ddot{ \smile}} \:  \tt \: s _{n} = sum \: of \: n \: terms


MisterIncredible: Fantastic
Similar questions