Math, asked by mpm642557, 1 year ago

find the sum of first 15 multiples of 999​

Answers

Answered by chaviLOVER
0

Answer:

Hi there!

Hi there!The positive integers which are multiple of 8 are:

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 terms

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. 

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)                                               = (15/2) × (16 + 112)

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)                                               = (15/2) × (16 + 112)                                               = (15 × 128)/2

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)                                               = (15/2) × (16 + 112)                                               = (15 × 128)/2                                               = 15 × 64                  

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)                                               = (15/2) × (16 + 112)                                               = (15 × 128)/2                                               = 15 × 64                                                                 = 960

Hi there!The positive integers which are multiple of 8 are:8, 16, 24... to 15 termsIt forms an arithmetic series. Now,First term, a = 8Common difference, d = 8Number of terms, n = 15Now, sum of first 15 terms of AP = (n/2) × {2a + (n-1)d}                                               = (15/2) × {2 × 8 + (15-1)8}                                               = (15/2) × (16 + 14 × 8)                                               = (15/2) × (16 + 112)                                               = (15 × 128)/2                                               = 15 × 64                                                                 = 960Cheers!

Answered by ROCKSTAR1OO8
0

Answer:

multiples of 999: 999, 1998, 2997, 3996,................,14985

here

a = 999

d = 999

n = 15

an = 14985

according to question

Sn = n/2{a+an}

Sn = 15/2[999+14985]

Sn = [15984/2]15

Sn = 119880 ans

Step-by-step explanation:

Similar questions