Math, asked by Deepakbhai, 11 months ago

Find the sum of first 15th terms of the following APs : 11, 6, 1, -4, -9 .........​

Answers

Answered by BrainlyConqueror0901
6

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore s_{15}=-285}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{given : } \\  \implies A.P = 11,6,1,- 4, - 9,..... \\  \\ \implies First \: term(a) = 11 \\  \\  \implies Common \: difference(d) = 6 - 11 =  - 5  \\ \\  \underline \bold{To \: Find : } \\  \implies  s_{15} = ?

• According to given question :

\bold{Using \: formula \: sum \: of \: n_{th}  \: terms : } \\  \implies  s_{n} =  \frac{n}{2} (2a + (n - 1)d) \\   \\  \bold{Putting \: given \: values : }\\ \implies  s_{15}  =  \frac{15}{2} (2 \times 11 + (15 - 1) \times  -5 \\  \\  \implies  s_{15} =  \frac{15}{2} (22 + 14 \times  - 5) \\  \\ \implies  s_{15} =  \frac{15}{2} (22 - 60) \\  \\  \implies  s_{15} =  \frac{15}{ \cancel2}  \times  \cancel{ - 38} \\  \\  \implies  s_{15} = 15 \times  - 19 \\  \\  \bold{\implies  s_{15} =  - 285}

Answered by lAravindReddyl
26

\boxed{\mathsf{\green{Answer}}}

Sum of 15 terms = -360

\boxed{\mathsf{\green{Explanation}}}

Given:

A.P. series is,

11, 6, 1, -4, -9...

To Find:

Sum of 15 terms of A.P.

Solution:

The A.P. is

11, 6, 1, -4...

Here,

a = 11

d = 6-11 = -5

n = 15

w.k.t

\boxed{\bold{\pink{S_n = \dfrac{n}{2}[2a+(n-1)d]}}}

\mathsf{S_{15} = \dfrac{15}{2}[2(11)+(15-1)(-5)]}

\mathsf{S_{15} = \dfrac{15}{2}[22+(14)(-5)]}

\mathsf{S_{15} = \dfrac{15}{2}[22-70]}

\mathsf{S_{15} = \dfrac{15}{2}[-48]}

\mathsf{S_{15} = 15 (-24)}

\mathsf{S_{15} = -360}

Similar questions