Math, asked by sonamtsomu563, 1 month ago

find the sum of first 20 terms of arithmetic progression with a = 1 and 20th term l = 58​

Answers

Answered by midhunmadhu1987
13

Answer:

590

Step-by-step explanation:

Given that,

First Term, a = 1

a₂₀ = 58

20th term, a₂₀ = a + 19d  ---- since aₙ = a + (n - 1)d

a + 19d = 58

1 + 19d = 58

19d = 58-1

19d = 57

d = 57/19

d = 3

Sum to n terms,

Sₙ = \frac{n}{2} (a+an)

Sₙ = \frac{20}{2}(1+58) \\= 10 * 59\\= 590

Answered by XxLuckyGirIxX
124

\bf\purple{QuestioN:-}

Find the sum of first 20 terms of arithmetic progression when a = 1 and 20th term = 58​.

\bf\pink{AnsweR:-}

\underline{\underline{\rm{\bigstar\:Given\::-}}}

  • No. of terms = 20

  • First term = 1

  • Last term = 58

\underline{\underline{\rm{\bigstar\:To\:Find\::-}}}

  • The sum of first 20 terms of the AP

\underline{\underline{\rm{\bigstar\:Solution\::-}}}

Formula that can be applied here is,

\implies\bf{S_n=\dfrac{n}{2}\times(First\:term+\:last\:term)}

On substituting values,

\implies\bf{S_{20}=\dfrac{20}{2}\times(1+58)}

\implies\bf{S_{20}=10\times59}

\implies\bf{S_{20}=590}

Hence,

The sum of first 20 terms of this AP is 590.

The required answer for your question is 590.

                                                                                                                                                                                                                                                                                                                                                                                                Kindly view this answer in brainly.in.

Link of your question:

https://brainly.in/question/43008201

                                                                                                                                  Happy Learning dear!❤

Similar questions