Math, asked by archanaditi, 10 months ago

find the sum of first 22 terms of an AP in which d is 7 and 22nd term is 149.​

Answers

Answered by saindulakavath
7

1661 is the answer

refer the following attachment for Step-by-step explanation

Attachments:
Answered by sourya1794
45

Given :-

  • common difference (d) = 7

  • 22nd term = 149

  • n = 22

To find :-

  • The sum of 22 terms of an AP.

Solution :-

\rm\:a_{22}=149

\rm\longrightarrow\:a+21d=149

\rm\longrightarrow\:a+21\times{7}=149

\rm\longrightarrow\:a+147=149

\rm\longrightarrow\:a=149-147

\rm\longrightarrow\:a=2

Now,

By using formula of Sn,

\blue{\bigstar}\:\:{\underline{\boxed{\bf\red{s_n=\dfrac{n}{2}\:[2a+(n-1)d]}}}}

\rm\longrightarrow\:s_{22}=\dfrac{22}{2}\:[2\times{2}+(22-1)\times{7}

\rm\longrightarrow\:s_{22}=11(4+21\times{7})

\rm\longrightarrow\:s_{22}=11(4+147)

\rm\longrightarrow\:s_{22}=11\times{151}

\rm\longrightarrow\:s_{22}=1661

Hence,the sum of first 22nd terms of an AP will be 1661

Similar questions