Math, asked by Rameshborah, 1 year ago

Find the sum of first 22terms of an AP in which d=7 and 22nd term is 149

Answers

Answered by Iamanantmall
14
22nd term= 149
d=7
a+(22-1)7=149
a+21*7=149
a+147=149
a=2
S22=22(2+21*7)/2
S22=11(2+147)
S22=11*149
S22=6139 ans

Rameshborah: OK
Iamanantmall: please check it again
Iamanantmall: i have find it correctly this time
Rameshborah: ur answer is wrong
visionwrafed96: it is wrong
Rameshborah: yes
visionwrafed96: s=n/2(a+l) and here l will be 149
Rameshborah: it will be 1661
visionwrafed96: yes
Iamanantmall: okk
Answered by Anonymous
4

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}




\bf\huge Let \:a\: be\: first\: term\: be\: a\: and\: d\: be\: Common\: difference




\bf\huge d = 7 \:and\: a_{22} = 149




\bf\huge => a + (n - 1)d = 149




\bf\huge => a + 21\times 7 = 149




\bf\huge => a = 149 - 147 = 2




\bf\huge Substitute n = 22 , a = 2\: and\: d = 7




\bf\huge S_{n} = \frac{N}{2} [2a + (n - 1)d]




\bf\huge S_{22} = \frac{22}{2}[2\times 2 + (22 - 1)7]




\bf\huge = 11(4 + 21\times 7)




\bf\huge = 11(4 + 147)




\bf\huge => 11\times 151 = 1661




\bf\huge Sum\:of\: first\:22\:term\:is\:1661





\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}



Similar questions